Thermal hysteresis

from Wikipedia, the free encyclopedia
Path dependence of cause and effect (hysteresis)

Under heat hysteresis or thermal hysteresis  (TH) of the difference (which is hysteresis ) between the melting and solidification points of a solution understood.

properties

The heat hysteresis can be observed in the change of a temperature-dependent property of some solutions: If this changes with heating and cooling by the same factor, but to different degrees, one speaks of heat hysteresis. The separation of the melting and freezing temperatures is called thermal hysteresis . The temperature at which ice formation occurs is referred to in this context as the hysteresis freezing point .

Thermal hysteresis in biological systems

The anti-frost protein from Choristoneura fumiferana responsible for heat hysteresis

Thermal hysteresis in living things indicates the presence of biological antifreeze agents ( e.g. antifreeze proteins , synonymous with thermal hysteresis proteins ) and has been described in animals, plants, bacteria and fungi. These proteins create a depression of the freezing point and reduce the formation of ice crystals by binding in a non- colligative manner to the surface of the ice crystals being formed.

The behavior of a number of synthetic nucleic acids in water- methanol mixtures at lower temperatures is also delayed in terms of thermal hysteresis.

literature

  • Stefan Kasapis, Ian T. Norton, Johan B. Ubbink: Modern Biopolymer Science: Bridging the Divide between Fundamental Treatise and Industrial Application. Academic Press, 2009. ISBN 978-0-08-092114-3 , pp. 98 ff.

Individual evidence

  1. : Thermal hysteresis . In: The free dictionary. Retrieved November 18, 2014.
  2. ^ A b E. Kristiansen, KE Zachariassen: The mechanism by which fish antifreeze proteins cause thermal hysteresis. In: Cryobiology. Volume 51, Number 3, December 2005, ISSN  0011-2240 , pp. 262-280, doi: 10.1016 / j.cryobiol.2005.07.007 , PMID 16140290 .
  3. SP Graether, MJ Kuiper, SM Gagné, VK Walker, Z. Jia, BD Sykes, PL Davies: beta-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. In: Nature. Volume 406, Number 6793, July 2000, ISSN  0028-0836 , pp. 325-328, doi: 10.1038 / 35018610 , PMID 10917537 .
  4. a b H. Kondo, Y. Hanada, H. Sugimoto, T. Hoshino, CP Garnham, PL Davies, S. Tsuda: Ice-binding site of snow mold fungus antifreeze protein deviates from structural regularity and high conservation. In: Proceedings of the National Academy of Sciences . Volume 109, number 24, June 2012, ISSN  1091-6490 , pp. 9360-9365, doi: 10.1073 / pnas.1121607109 , PMID 22645341 , PMC 3386094 (free full text).
  5. MM Harding, PI Anderberg, AD Haymet: 'Antifreeze' glycoproteins from polar fish. In: European Journal of Biochemistry / FEBS. Volume 270, Number 7, April 2003, ISSN  0014-2956 , pp. 1381-1392, PMID 12653993 .
  6. ^ SR Inglis, JJ Turner, MM Harding: Applications of type I antifreeze proteins: studies with model membranes & cryoprotectant properties. In: Current protein & peptide science. Volume 7, Number 6, December 2006, ISSN  1389-2037 , pp. 509-522, PMID 17168784 .
  7. J. Barrett: Thermal hysteresis proteins. In: The international journal of biochemistry & cell biology. Volume 33, Number 2, February 2001, ISSN  1357-2725 , pp. 105-117, PMID 11240367 .
  8. Eberhard Neumann: Molecular hysteresis and its cybernetic meaning. In: Angewandte Chemie. 85, 1973, pp. 430-444, doi: 10.1002 / ange.19730851003 . (PDF) ( Memento from November 29, 2014 in the Internet Archive ).