NIPA1: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Dexbot (talk | contribs)
m Bot: Deprecating Template:Cite pmid and some minor fixations
Removal request "Removing spammy content from c. 270 gene articles" from WP:AWBTASKS
 
(21 intermediate revisions by 12 users not shown)
Line 1: Line 1:
{{Short description|Protein-coding gene in humans}}

{{Infobox_gene}}
{{PBB|geneid=123606}}
'''Non-imprinted in Prader-Willi/Angelman syndrome region protein 1''' is a [[protein]] that in humans is encoded by the ''NIPA1'' [[gene]].<ref name="pmid14508710">{{cite journal | author = Rainier S, Chai JH, Tokarz D, Nicholls RD, Fink JK | title = NIPA1 gene mutations cause autosomal dominant hereditary spastic paraplegia (SPG6) | journal = Am J Hum Genet | volume = 73 | issue = 4 | pages = 967–71 |date=Sep 2003 | pmid = 14508710 | pmc = 1180617 | doi = 10.1086/378817 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: NIPA1 non imprinted in Prader-Willi/Angelman syndrome 1| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=123606| accessdate = }}</ref>
'''Non-imprinted in Prader-Willi/Angelman syndrome region protein 1''' is a [[protein]] that in humans is encoded by the ''NIPA1'' [[gene]].<ref name="pmid14508710">{{cite journal |vauthors=Rainier S, Chai JH, Tokarz D, Nicholls RD, Fink JK | title = NIPA1 gene mutations cause autosomal dominant hereditary spastic paraplegia (SPG6) | journal = Am J Hum Genet | volume = 73 | issue = 4 | pages = 967–71 |date=Sep 2003 | pmid = 14508710 | pmc = 1180617 | doi = 10.1086/378817 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: NIPA1 non imprinted in Prader-Willi/Angelman syndrome 1| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=123606}}</ref>
This gene encodes a potential [[transmembrane protein]] which functions either as a receptor or transporter molecule, possibly as a [[magnesium]] transporter.<ref>{{cite journal |vauthors=Goytain A, Hines RM, El-Husseini A, Quamme GA |title=NIPA1(SPG6), the basis for autosomal dominant form of hereditary spastic paraplegia, encodes a functional Mg2+ transporter. |journal=J. Biol. Chem. |volume=282 |issue= 11 |pages= 8060–8 |year= 2007 |pmid= 17166836 |doi= 10.1074/jbc.M610314200 |doi-access= free }}</ref> This protein is thought to play a role in [[nervous system]] development and maintenance. Alternative [[splice variant]]s have been described, but their biological nature has not been determined. Mutations in this gene have been associated with the human [[genetic disease]] autosomal dominant [[spastic paraplegia|spastic paraplegia 6]].<ref>{{cite journal |vauthors=Reed JA, Wilkinson PA, Patel H, etal |title=A novel NIPA1 mutation associated with a pure form of autosomal dominant hereditary spastic paraplegia. |journal=Neurogenetics |volume=6 |issue= 2 |pages= 79–84 |year= 2005 |pmid= 15711826 |doi= 10.1007/s10048-004-0209-9 |s2cid=2236413 }}</ref><ref>{{cite journal |vauthors=Rainier S, Chai JH, Tokarz D, etal |title=NIPA1 gene mutations cause autosomal dominant hereditary spastic paraplegia (SPG6). |journal=Am. J. Hum. Genet. |volume=73 |issue= 4 |pages= 967–71 |year= 2003 |pmid= 14508710 |doi=10.1086/378817 | pmc=1180617}}</ref>
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
| section_title =
| summary_text = This gene encodes a potential [[transmembrane protein]] which functions either as a receptor or transporter molecule, possibly as a [[magnesium]] transporter.<ref>{{cite journal | author=Goytain A, Hines RM, El-Husseini A, Quamme GA |title=NIPA1(SPG6), the basis for autosomal dominant form of hereditary spastic paraplegia, encodes a functional Mg2+ transporter. |journal=J. Biol. Chem. |volume=282 |issue= 11 |pages= 8060–8 |year= 2007 |pmid= 17166836 |doi= 10.1074/jbc.M610314200 }}</ref> This protein is thought to play a role in [[nervous system]] development and maintenance. Alternative [[splice variant]]s have been described, but their biological nature has not been determined. Mutations in this gene have been associated with the human [[genetic disease]] autosomal dominant [[spastic paraplegia|spastic paraplegia 6]].<ref>{{cite journal | author=Reed JA, Wilkinson PA, Patel H, ''et al.'' |title=A novel NIPA1 mutation associated with a pure form of autosomal dominant hereditary spastic paraplegia. |journal=Neurogenetics |volume=6 |issue= 2 |pages= 79–84 |year= 2005 |pmid= 15711826 |doi= 10.1007/s10048-004-0209-9 }}</ref><ref>{{cite journal | author=Rainier S, Chai JH, Tokarz D, ''et al.'' |title=NIPA1 gene mutations cause autosomal dominant hereditary spastic paraplegia (SPG6). |journal=Am. J. Hum. Genet. |volume=73 |issue= 4 |pages= 967–71 |year= 2003 |pmid= 14508710 |doi=10.1086/378817 | pmc=1180617}}</ref>
}}

==Model organisms==
{| class="wikitable sortable collapsible collapsed" border="1" cellpadding="2" style="float: right;" |
|+ ''Nipa1'' knockout mouse phenotype
|-
! Characteristic!! Phenotype

|-
| [[Homozygote]] viability || bgcolor="#488ED3"|Normal
|-
| Fertility || bgcolor="#488ED3"|Normal
|-
| Body weight || bgcolor="#488ED3"|Normal
|-
| [[Open_Field_(animal_test)|Anxiety]] || bgcolor="#488ED3"|Normal
|-
| Neurological assessment || bgcolor="#488ED3"|Normal
|-
| Grip strength || bgcolor="#488ED3"|Normal
|-
| [[Hot_plate_test|Hot plate]] || bgcolor="#488ED3"|Normal
|-
| [[Dysmorphology]] || bgcolor="#488ED3"|Normal
|-
| [[Indirect calorimetry]] || bgcolor="#488ED3"|Normal
|-
| [[Glucose tolerance test]] || bgcolor="#488ED3"|Normal
|-
| [[Auditory brainstem response]] || bgcolor="#488ED3"|Normal
|-
| [[Dual-energy_X-ray_absorptiometry|DEXA]] || bgcolor="#488ED3"|Normal
|-
| [[Radiography]] || bgcolor="#488ED3"|Normal
|-
| Body temperature || bgcolor="#488ED3"|Normal
|-
| Eye morphology || bgcolor="#488ED3"|Normal
|-
| [[Clinical chemistry]] || bgcolor="#488ED3"|Normal
|-
| [[Blood plasma|Plasma]] [[immunoglobulin]]s || bgcolor="#488ED3"|Normal
|-
| [[Haematology]] || bgcolor="#488ED3"|Normal
|-
| [[Micronucleus test]] || bgcolor="#488ED3"|Normal
|-
| Heart weight || bgcolor="#488ED3"|Normal
|-
| Skin Histopathology || bgcolor="#488ED3"|Normal
|-
| Brain histopathology || bgcolor="#488ED3"|Normal
|-
| ''[[Salmonella]]'' infection || bgcolor="#488ED3"|Normal<ref name="''Salmonella'' infection">{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MBMV/salmonella-challenge/ |title=''Salmonella'' infection data for Nipa1 |publisher=Wellcome Trust Sanger Institute}}</ref>
|-
| ''[[Citrobacter]]'' infection || bgcolor="#488ED3"|Normal<ref name="''Citrobacter'' infection">{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MBMV/citrobacter-challenge/ |title=''Citrobacter'' infection data for Nipa1 |publisher=Wellcome Trust Sanger Institute}}</ref>
|-
| colspan=2; style="text-align: center;" | All tests and analysis from<ref name="mgp_reference">{{cite journal| doi = 10.1111/j.1755-3768.2010.4142.x| title = The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice| year = 2010| author = Gerdin AK| journal = Acta Ophthalmologica| volume = 88| issue = S248 }}</ref><ref>[http://www.sanger.ac.uk/mouseportal/ Mouse Resources Portal], Wellcome Trust Sanger Institute.</ref>
|}
[[Model organism]]s have been used in the study of NIPA1 function. A conditional [[knockout mouse]] line, called ''Nipa1<sup>tm1a(KOMP)Wtsi</sup>''<ref name="allele_ref">{{cite web |url=http://www.knockoutmouse.org/martsearch/search?query=Nipa1 |title=International Knockout Mouse Consortium}}</ref><ref name="mgi_allele_ref">{{cite web |url=http://www.informatics.jax.org/searchtool/Search.do?query=MGI:4363744 |title=Mouse Genome Informatics}}</ref> was generated as part of the [[International Knockout Mouse Consortium]] program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists — at the [[Wellcome Trust Sanger Institute]].<ref name="pmid21677750">{{Cite journal
| last1 = Skarnes |first1 =W. C.
| doi = 10.1038/nature10163
| last2 = Rosen | first2 = B.
| last3 = West | first3 = A. P.
| last4 = Koutsourakis | first4 = M.
| last5 = Bushell | first5 = W.
| last6 = Iyer | first6 = V.
| last7 = Mujica | first7 = A. O.
| last8 = Thomas | first8 = M.
| last9 = Harrow | first9 = J.
| last10 = Cox | first10 = T.
| last11 = Jackson | first11 = D.
| last12 = Severin | first12 = J.
| last13 = Biggs | first13 = P.
| last14 = Fu | first14 = J.
| last15 = Nefedov | first15 = M.
| last16 = De Jong | first16 = P. J.
| last17 = Stewart | first17 = A. F.
| last18 = Bradley | first18 = A.
| title = A conditional knockout resource for the genome-wide study of mouse gene function
| journal = Nature
| volume = 474
| issue = 7351
| pages = 337–342
| year = 2011
| pmid = 21677750
| pmc =3572410
}}</ref><ref name="mouse_library">{{cite journal |author=Dolgin E |title=Mouse library set to be knockout |journal=Nature |volume=474 |issue=7351 |pages=262–3 |date=June 2011 |pmid=21677718 |doi=10.1038/474262a }}</ref><ref name="mouse_for_all_reasons">{{cite journal |author=Collins FS, Rossant J, Wurst W |title=A mouse for all reasons |journal=Cell |volume=128 |issue=1 |pages=9–13 |date=January 2007 |pmid=17218247 |doi=10.1016/j.cell.2006.12.018 }}</ref>

Male and female animals underwent a standardized [[phenotypic screen]] to determine the effects of deletion.<ref name="mgp_reference" /><ref name="pmid21722353">{{cite journal| author=van der Weyden L, White JK, Adams DJ, Logan DW| title=The mouse genetics toolkit: revealing function and mechanism. | journal=Genome Biol | year= 2011 | volume= 12 | issue= 6 | pages= 224 | pmid=21722353 | doi=10.1186/gb-2011-12-6-224 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21722353 | pmc=3218837}} </ref> Twenty four tests were carried out on [[mutant]] mice but no significant abnormalities were observed.<ref name="mgp_reference" />


==References==
==References==
{{reflist}}
{{reflist}}

==Further reading==
==Further reading==
{{refbegin | 2}}
{{refbegin | 2}}
*{{cite journal |vauthors=Bittel DC, Kibiryeva N, Butler MG |title=Expression of 4 genes between chromosome 15 breakpoints 1 and 2 and behavioral outcomes in Prader-Willi syndrome. |journal=Pediatrics |volume=118 |issue= 4 |pages= e1276–83 |year= 2006 |pmid= 16982806 |doi= 10.1542/peds.2006-0424 |pmc= 5453799 }}
{{PBB_Further_reading
*{{cite journal |vauthors=Liu T, Qian WJ, Gritsenko MA, etal |title=Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. |journal=J. Proteome Res. |volume=4 |issue= 6 |pages= 2070–80 |year= 2006 |pmid= 16335952 |doi= 10.1021/pr0502065 | pmc=1850943 }}
| citations =
*{{cite journal | author=Bittel DC, Kibiryeva N, Butler MG |title=Expression of 4 genes between chromosome 15 breakpoints 1 and 2 and behavioral outcomes in Prader-Willi syndrome. |journal=Pediatrics |volume=118 |issue= 4 |pages= e1276–83 |year= 2006 |pmid= 16982806 |doi= 10.1542/peds.2006-0424 }}
*{{cite journal |vauthors=Munhoz RP, Kawarai T, Teive HA, etal |title=Clinical and genetic study of a Brazilian family with spastic paraplegia (SPG6 locus). |journal=Mov. Disord. |volume=21 |issue= 2 |pages= 279–81 |year= 2006 |pmid= 16267846 |doi= 10.1002/mds.20775 |s2cid=21070143 |doi-access=free }}
*{{cite journal | author=Liu T, Qian WJ, Gritsenko MA, ''et al.'' |title=Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. |journal=J. Proteome Res. |volume=4 |issue= 6 |pages= 2070–80 |year= 2006 |pmid= 16335952 |doi= 10.1021/pr0502065 | pmc=1850943 }}
*{{cite journal |vauthors=Chen S, Song C, Guo H, etal |title=Distinct novel mutations affecting the same base in the NIPA1 gene cause autosomal dominant hereditary spastic paraplegia in two Chinese families. |journal=Hum. Mutat. |volume=25 |issue= 2 |pages= 135–41 |year= 2006 |pmid= 15643603 |doi= 10.1002/humu.20126 |s2cid=5773016 |doi-access=free }}
*{{cite journal | author=Munhoz RP, Kawarai T, Teive HA, ''et al.'' |title=Clinical and genetic study of a Brazilian family with spastic paraplegia (SPG6 locus). |journal=Mov. Disord. |volume=21 |issue= 2 |pages= 279–81 |year= 2006 |pmid= 16267846 |doi= 10.1002/mds.20775 }}
*{{cite journal |vauthors=Chai JH, Locke DP, Greally JM, etal |title=Identification of four highly conserved genes between breakpoint hotspots BP1 and BP2 of the Prader-Willi/Angelman syndromes deletion region that have undergone evolutionary transposition mediated by flanking duplicons. |journal=Am. J. Hum. Genet. |volume=73 |issue= 4 |pages= 898–925 |year= 2003 |pmid= 14508708 |doi=10.1086/378816 | pmc=1180611 }}
*{{cite journal | author=Chen S, Song C, Guo H, ''et al.'' |title=Distinct novel mutations affecting the same base in the NIPA1 gene cause autosomal dominant hereditary spastic paraplegia in two Chinese families. |journal=Hum. Mutat. |volume=25 |issue= 2 |pages= 135–41 |year= 2006 |pmid= 15643603 |doi= 10.1002/humu.20126 }}
*{{cite journal |vauthors=Toyoda N, Nagai S, Terashima Y, etal |title=Analysis of mRNA with microsomal fractionation using a SAGE-based DNA microarray system facilitates identification of the genes encoding secretory proteins. |journal=Genome Res. |volume=13 |issue= 7 |pages= 1728–36 |year= 2003 |pmid= 12805275 |doi= 10.1101/gr.709603 | pmc=403746 }}
*{{cite journal | author=Chai JH, Locke DP, Greally JM, ''et al.'' |title=Identification of four highly conserved genes between breakpoint hotspots BP1 and BP2 of the Prader-Willi/Angelman syndromes deletion region that have undergone evolutionary transposition mediated by flanking duplicons. |journal=Am. J. Hum. Genet. |volume=73 |issue= 4 |pages= 898–925 |year= 2003 |pmid= 14508708 |doi=10.1086/378816 | pmc=1180611 }}
*{{cite journal |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 |bibcode=2002PNAS...9916899M |doi-access=free }}
*{{cite journal | author=Toyoda N, Nagai S, Terashima Y, ''et al.'' |title=Analysis of mRNA with microsomal fractionation using a SAGE-based DNA microarray system facilitates identification of the genes encoding secretory proteins. |journal=Genome Res. |volume=13 |issue= 7 |pages= 1728–36 |year= 2003 |pmid= 12805275 |doi= 10.1101/gr.709603 | pmc=403746 }}
*{{cite journal |vauthors=Fink JK, Jones SM, Sharp GB, etal |title=Hereditary spastic paraplegia linked to chromosome 15q: Analysis of candidate genes. |journal=Neurology |volume=46 |issue= 3 |pages= 835–6 |year= 1996 |pmid= 8618696 |doi= 10.1212/wnl.46.3.835|s2cid=39414032 }}
*{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 }}
*{{cite journal |vauthors=Fink JK, Wu CT, Jones SM, etal |title=Autosomal dominant familial spastic paraplegia: tight linkage to chromosome 15q. |journal=Am. J. Hum. Genet. |volume=56 |issue= 1 |pages= 188–92 |year= 1995 |pmid= 7825577 | pmc=1801321 }}
*{{cite journal | author=Fink JK, Jones SM, Sharp GB, ''et al.'' |title=Hereditary spastic paraplegia linked to chromosome 15q: Analysis of candidate genes. |journal=Neurology |volume=46 |issue= 3 |pages= 835–6 |year= 1996 |pmid= 8618696 |doi= 10.1212/wnl.46.3.835}}
*{{cite journal | author=Fink JK, Wu CT, Jones SM, ''et al.'' |title=Autosomal dominant familial spastic paraplegia: tight linkage to chromosome 15q. |journal=Am. J. Hum. Genet. |volume=56 |issue= 1 |pages= 188–92 |year= 1995 |pmid= 7825577 |doi= | pmc=1801321 }}
}}
{{refend}}
{{refend}}


{{gene-15-stub}}


<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = no
| update_citations = yes
}}
[[Category:Genes mutated in mice]]
[[Category:Genes mutated in mice]]

Latest revision as of 06:59, 18 December 2023

NIPA1
Identifiers
AliasesNIPA1, FSP3, SPG6, non imprinted in Prader-Willi/Angelman syndrome 1, SLC57A1, NIPA magnesium transporter 1
External IDsOMIM: 608145 MGI: 2442058 HomoloGene: 42327 GeneCards: NIPA1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_144599
NM_001142275

NM_153578

RefSeq (protein)

NP_001135747
NP_653200
NP_001135747.1

NP_705806

Location (UCSC)Chr 15: 22.77 – 22.83 MbChr 7: 55.63 – 55.67 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Non-imprinted in Prader-Willi/Angelman syndrome region protein 1 is a protein that in humans is encoded by the NIPA1 gene.[5][6] This gene encodes a potential transmembrane protein which functions either as a receptor or transporter molecule, possibly as a magnesium transporter.[7] This protein is thought to play a role in nervous system development and maintenance. Alternative splice variants have been described, but their biological nature has not been determined. Mutations in this gene have been associated with the human genetic disease autosomal dominant spastic paraplegia 6.[8][9]

References[edit]

  1. ^ a b c ENSG00000288478 GRCh38: Ensembl release 89: ENSG00000170113, ENSG00000288478Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000047037Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Rainier S, Chai JH, Tokarz D, Nicholls RD, Fink JK (Sep 2003). "NIPA1 gene mutations cause autosomal dominant hereditary spastic paraplegia (SPG6)". Am J Hum Genet. 73 (4): 967–71. doi:10.1086/378817. PMC 1180617. PMID 14508710.
  6. ^ "Entrez Gene: NIPA1 non imprinted in Prader-Willi/Angelman syndrome 1".
  7. ^ Goytain A, Hines RM, El-Husseini A, Quamme GA (2007). "NIPA1(SPG6), the basis for autosomal dominant form of hereditary spastic paraplegia, encodes a functional Mg2+ transporter". J. Biol. Chem. 282 (11): 8060–8. doi:10.1074/jbc.M610314200. PMID 17166836.
  8. ^ Reed JA, Wilkinson PA, Patel H, et al. (2005). "A novel NIPA1 mutation associated with a pure form of autosomal dominant hereditary spastic paraplegia". Neurogenetics. 6 (2): 79–84. doi:10.1007/s10048-004-0209-9. PMID 15711826. S2CID 2236413.
  9. ^ Rainier S, Chai JH, Tokarz D, et al. (2003). "NIPA1 gene mutations cause autosomal dominant hereditary spastic paraplegia (SPG6)". Am. J. Hum. Genet. 73 (4): 967–71. doi:10.1086/378817. PMC 1180617. PMID 14508710.

Further reading[edit]