DPANN: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Expanding reference.
consistent citation formatting; templated citations
Line 18: Line 18:
| synonyms =
| synonyms =
}}
}}
'''DPANN''' (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaea) is a super[[phylum]] of [[extremophile]] [[Archaea]]<ref name="Castelle2015">{{Cite journal | last=Castelle | first=Cindy J. | last2=Wrighton | first2=Kelly C. | last3=Thomas | first3=Brian C. | last4=Hug | first4=Laura A. | last5=Brown | first5=Christopher T. | last6=Wilkins | first6=Michael J. | last7=Frischkorn | first7=Kyle R. | last8=Tringe | first8=Susannah G. | last9=Singh | first9=Andrea | first10=Lye Meng | last10=Markillie | first11=Ronald C. | last11=Taylor | first12=Kenneth H. | last12=Williams | first13=Jillian F. | last13=Banfield | year=2015 | title=Genomic expansion of domain Archaea highlights roles for organisms from new phyla in anaerobic carbon cycling | url=http://dx.doi.org/10.1016/j.cub.2015.01.014 | journal=Current Biology | volume=25 | issue=6 | pages=690–701 | doi=10.1016/j.cub.2015.01.014 | issn=0960-9822}}</ref> first proposed in 2013.<ref name="Rinke2013">{{Cite journal | last=Rinke | first=Christian | last2=Schwientek | first2=Patrick | last3=Sczyrba | first3=Alexander | last4=Ivanova | first4=Natalia N. | last5=Anderson | first5=Iain J. | last6=Cheng | first6=Jan-Fang | last7=Darling | first7=Aaron | last8=Malfatti | first8=Stephanie | last9=Swan | first9=Brandon K. | first10=Esther A. | last10=Gies | first11=Jeremy A. | last11=Dodsworth | first12=Brian P. | last12=Hedlund | first13=George | last13=Tsiamis | first14=Stefan M. | last14=Sievert | first15=Wen-Tso | last15=Liu | first16=Jonathan A. | last16=Eisen | first17=Steven J. | last17=Hallam | first18=Nikos C. | last18=Kyrpides | first19=Ramunas | last19=Stepanauskas | first20=Edward M. | last20=Rubin | first21=Philip | last21=Hugenholtz | first22=Tanja | last22=Woyke | year=2013 | title=Insights into the phylogeny and coding potential of microbial dark matter | url=https://doi.org/10.1038/nature12352 | journal=Nature | language=En | volume=499 | issue=7459 | pages=431–437 | doi=10.1038/nature12352 | issn=0028-0836}}</ref>
'''DPANN''' (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaea) is a super[[phylum]] of [[extremophile]] [[Archaea]]<ref name="Castelle2015">{{cite journal | vauthors = Castelle CJ, Wrighton KC, Thomas BC, Hug LA, Brown CT, Wilkins MJ, Frischkorn KR, Tringe SG, Singh A, Markillie LM, Taylor RC, Williams KH, Banfield JF | title = Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling | journal = Current Biology | volume = 25 | issue = 6 | pages = 690–701 | date = March 2015 | pmid = 25702576 | doi = 10.1016/j.cub.2015.01.014 | url = http://dx.doi.org/10.1016/j.cub.2015.01.014 }}</ref> first proposed in 2013.<ref name="Rinke2013">{{cite journal | vauthors = Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, Darling A, Malfatti S, Swan BK, Gies EA, Dodsworth JA, Hedlund BP, Tsiamis G, Sievert SM, Liu WT, Eisen JA, Hallam SJ, Kyrpides NC, Stepanauskas R, Rubin EM, Hugenholtz P, Woyke T | title = Insights into the phylogeny and coding potential of microbial dark matter | language = En | journal = Nature | volume = 499 | issue = 7459 | pages = 431–7 | date = July 2013 | pmid = 23851394 | doi = 10.1038/nature12352 | url = https://doi.org/10.1038/nature12352 }}</ref>


DPANN is an acronym formed by the initials of the first five groups discovered, [[Diapherotrites]], [[Parvarchaeota]], [[Aenigmarchaeota]], [[Nanoarchaeota]] and [[Nanohaloarchaeota]]. Later [[Woesearchaeota]] and [[Pacearchaeota]] were discovered and proposed within the DPANN superphylum.<ref name="Castelle2015" /> In 2017, another phylum Altiarchaeota was placed into this superphylum.<ref>{{cite web | url= http://science.sciencemag.org/content/357/6351/eaaf3883| title= Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life| author= Anja Spang, Eva F. Caceres, Thijs J. G. Ettema| date= 11 Aug 2017 | work= | publisher= Science}}</ref>
DPANN is an acronym formed by the initials of the first five groups discovered, [[Diapherotrites]], [[Parvarchaeota]], [[Aenigmarchaeota]], [[Nanoarchaeota]] and [[Nanohaloarchaeota]]. Later [[Woesearchaeota]] and [[Pacearchaeota]] were discovered and proposed within the DPANN superphylum.<ref name="Castelle2015" /> In 2017, another phylum Altiarchaeota was placed into this superphylum.<ref>{{cite web | url= http://science.sciencemag.org/content/357/6351/eaaf3883| title= Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life| author= Anja Spang, Eva F. Caceres, Thijs J. G. Ettema| date= 11 Aug 2017 | work= | publisher= Science}}</ref>


The DPANN groups together different phyla with a variety of environmental distribution and metabolism, ranging from symbiotic and thermophilic forms such as [[Nanoarchaeota]], acidophiles like [[Parvarchaeota]] and non-extremophiles like [[Aenigmarchaeota]] and [[Diapherotrites]]. DPANN was also detected in nitrate-rich groundwater, on the water surface but not below, indicating that these taxa are still quite difficult to locate.<ref>{{Cite journal|last=Ludington|first=William B.|last2=Seher|first2=Thaddeus D.|last3=Applegate|first3=Olin|last4=Li|first4=Xunde|last5=Kliegman|first5=Joseph I.|last6=Langelier|first6=Charles|last7=Atwill|first7=Edward R.|last8=Harter|first8=Thomas|last9=DeRisi|first9=Joseph L.|date=2017-04-06|title=Assessing biosynthetic potential of agricultural groundwater through metagenomic sequencing: A diverse anammox community dominates nitrate-rich groundwater|url=https://doi.org/10.1371/journal.pone.0174930|journal=PLOS ONE|language=en|volume=12|issue=4|pages=e0174930|doi=10.1371/journal.pone.0174930|issn=1932-6203|pmc=PMC5383146|pmid=28384184}}</ref>
The DPANN groups together different phyla with a variety of environmental distribution and metabolism, ranging from symbiotic and thermophilic forms such as [[Nanoarchaeota]], acidophiles like [[Parvarchaeota]] and non-extremophiles like [[Aenigmarchaeota]] and [[Diapherotrites]]. DPANN was also detected in nitrate-rich groundwater, on the water surface but not below, indicating that these taxa are still quite difficult to locate.<ref>{{cite journal | vauthors = Ludington WB, Seher TD, Applegate O, Li X, Kliegman JI, Langelier C, Atwill ER, Harter T, DeRisi JL | title = Assessing biosynthetic potential of agricultural groundwater through metagenomic sequencing: A diverse anammox community dominates nitrate-rich groundwater | journal = PloS One | volume = 12 | issue = 4 | pages = e0174930 | date = 2017-04-06 | pmid = 28384184 | pmc = 5383146 | doi = 10.1371/journal.pone.0174930 | url = https://doi.org/10.1371/journal.pone.0174930 }}</ref>


== Classification ==
== Classification ==


* [[Diapherotrites]]. Found by phylogenetic analysis of the genomes recovered from the groundwater filtration of a gold mine abandoned in the USA.<ref>[http://genomesonline.org/cgi-bin/GOLD/bin/GOLDCards.cgi?goldstamp=Gi15106 Genomes Online Database]</ref><ref>Comolli LR, Baker BJ, Downing KH, Siegerist CE, Banfield JF (2009) Three-dimensional analysis of the structure and ecology of a novel, ultra-small archaeon. ISME J 3:159–167.</ref>
* [[Diapherotrites]]. Found by phylogenetic analysis of the genomes recovered from the groundwater filtration of a gold mine abandoned in the USA.<ref>[http://genomesonline.org/cgi-bin/GOLD/bin/GOLDCards.cgi?goldstamp=Gi15106 Genomes Online Database]</ref><ref name="pmid18946497">{{cite journal | vauthors = Comolli LR, Baker BJ, Downing KH, Siegerist CE, Banfield JF | title = Three-dimensional analysis of the structure and ecology of a novel, ultra-small archaeon | journal = The ISME Journal | volume = 3 | issue = 2 | pages = 159–67 | date = February 2009 | pmid = 18946497 | doi = 10.1038/ismej.2008.99 }}</ref>
* [[Parvarchaeota]] and [[Micrarchaeota]]. Discovered in 2006 in strongly acidic sewage from a US mine.<ref>Baker, B. J., Tyson, G. W., Webb, R. I., et al.(2006) “Lineages of acidophilic archaea revealed by community genomic analysis,” Science, 314(5807):1933–1935.</ref><ref>Murakami, S., Fujishima, K., Tomita, M., Kanai, A.(2012) Metatranscriptomic analysis of microbes in an ocean-front deep subsurface hot spring reveals novel small RNAs and type-specific tRNA degradation. Applied and Environmental Microbiology 78(4):1015-22.</ref><ref>B. J. Baker, L. R. Comolli, G. J. Dick, L. J. Hauser, D. Hyatt, B. D. Dill, M. L. Land, N. C. VerBerkmoes, R. L. Hettich, J. F. Banfield. Enigmatic, ultrasmall, uncultivated Archaea. Proceedings of the National Academy of Sciences (2010).</ref> They are of very small size and provisionally called [[ARMAN]] (Archaeal Richmond Mine Acidophilic Nanoorganisms).
* [[Parvarchaeota]] and [[Micrarchaeota]]. Discovered in 2006 in strongly acidic sewage from a US mine.<<ref name="pmid17185602">{{cite journal | vauthors = Baker BJ, Tyson GW, Webb RI, Flanagan J, Hugenholtz P, Allen EE, Banfield JF | title = Lineages of acidophilic archaea revealed by community genomic analysis | journal = Science (New York, N.Y.) | volume = 314 | issue = 5807 | pages = 1933–5 | date = December 2006 | pmid = 17185602 | doi = 10.1126/science.1132690 }}</ref><ref name="pmid22156430">{{cite journal | vauthors = Murakami S, Fujishima K, Tomita M, Kanai A | title = Metatranscriptomic analysis of microbes in an Oceanfront deep-subsurface hot spring reveals novel small RNAs and type-specific tRNA degradation | journal = Applied and Environmental Microbiology | volume = 78 | issue = 4 | pages = 1015–22 | date = February 2012 | pmid = 22156430 | pmc = 3272989 | doi = 10.1128/AEM.06811-11 }}</ref><ref name="pmid20421484">{{cite journal | vauthors = Baker BJ, Comolli LR, Dick GJ, Hauser LJ, Hyatt D, Dill BD, Land ML, Verberkmoes NC, Hettich RL, Banfield JF | title = Enigmatic, ultrasmall, uncultivated Archaea | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 107 | issue = 19 | pages = 8806–11 | date = May 2010 | pmid = 20421484 | pmc = 2889320 | doi = 10.1073/pnas.0914470107 }}</ref> They are of very small size and provisionally called [[ARMAN]] (Archaeal Richmond Mine Acidophilic Nanoorganisms).
* [[Woesearchaeota]] and [[Pacearchaeota]]. They have been identified both in sediments and in surface waters of aquifers and lakes, abounding especially in saline conditions.<ref>Castelle, C. J., Wrighton, K. C., Thomas, B. C., Hug, L. A., Brown, C. T., Wilkins, M. J., ... & Taylor, R. C. (2015). [http://www.sciencedirect.com/science/article/pii/S0960982215000160 Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling]. Current Biology, 25(6), 690-701.</ref><ref>Ortiz‐Alvarez, R., & Casamayor, E. O. (2016). High occurrence of Pacearchaeota and Woesearchaeota (Archaea superphylum DPANN) in the surface waters of oligotrophic high‐altitude lakes. Environmental microbiology reports.</ref>
* [[Woesearchaeota]] and [[Pacearchaeota]]. They have been identified both in sediments and in surface waters of aquifers and lakes, abounding especially in saline conditions.<ref name="pmid25702576">{{cite journal | vauthors = Castelle CJ, Wrighton KC, Thomas BC, Hug LA, Brown CT, Wilkins MJ, Frischkorn KR, Tringe SG, Singh A, Markillie LM, Taylor RC, Williams KH, Banfield JF | title = Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling | journal = Current Biology : CB | volume = 25 | issue = 6 | pages = 690–701 | date = March 2015 | pmid = 25702576 | doi = 10.1016/j.cub.2015.01.014 }}</ref><ref name="pmid26711582">{{cite journal | vauthors = Ortiz-Alvarez R, Casamayor EO | title = High occurrence of Pacearchaeota and Woesearchaeota (Archaea superphylum DPANN) in the surface waters of oligotrophic high-altitude lakes | journal = Environmental Microbiology Reports | volume = 8 | issue = 2 | pages = 210–7 | date = April 2016 | pmid = 26711582 | doi = 10.1111/1758-2229.12370 }}</ref>
* [[Aenigmarchaeota]]. Found in wastewater from mines and in sediments from hot springs.<ref>Takai, K., Moser, D. P., DeFlaun, M., Onstott, T. C. & Fredrickson, J. K. Archaeal diversity in waters fromdeep south african gold mines. Appl. Environ. Microbiol. 67, 5750–5760 (2001).</ref>
* [[Aenigmarchaeota]]. Found in wastewater from mines and in sediments from hot springs.<ref name="pmid11722932">{{cite journal | vauthors = Takai K, Moser DP, DeFlaun M, Onstott TC, Fredrickson JK | title = Archaeal diversity in waters from deep South African gold mines | journal = Applied and Environmental Microbiology | volume = 67 | issue = 12 | pages = 5750–60 | date = December 2001 | pmid = 11722932 | pmc = 93369 | doi = 10.1128/AEM.67.21.5750-5760.2001 }}</ref>
* [[Nanohaloarchaeota]]. Distributed in environments with high salinity.<ref>Narasingarao, P. et al. (2012). "De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities". ISME J. 6 (1): 81–93.</ref>
* [[Nanohaloarchaeota]]. Distributed in environments with high salinity.<ref name="pmid21716304">{{cite journal | vauthors = Narasingarao P, Podell S, Ugalde JA, Brochier-Armanet C, Emerson JB, Brocks JJ, Heidelberg KB, Banfield JF, Allen EE | title = De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities | journal = The ISME Journal | volume = 6 | issue = 1 | pages = 81–93 | date = January 2012 | pmid = 21716304 | pmc = 3246234 | doi = 10.1038/ismej.2011.78 }}</ref>
* [[Nanoarchaeota]]. They were the first discovered (in 2002) in a hydrothermal source next to the coast of Iceland. They live as symbionts of other archaea.<ref>Waters, E., Hohn, M. J., Ahel, I., Graham, D. E., Adams, M. D., Barnstead, M., Beeson, K. Y., Bibbs, L., Bolanos, R., Keller, M., Kretz, K., Lin, X., Mathur, E., Ni, J., Podar, M., Richardson, T., Sutton, G. G., Simon, M., Soll, D., Stetter, K. O., Short, J. M., Noordewier, M. (2003).</ref><ref>{{Cite journal|last=Waters|first=Elizabeth|last2=Hohn|first2=Michael J.|last3=Ahel|first3=Ivan|last4=Graham|first4=David E.|last5=Adams|first5=Mark D.|last6=Barnstead|first6=Mary|last7=Beeson|first7=Karen Y.|last8=Bibbs|first8=Lisa|last9=Bolanos|first9=Randall|last10=Keller|first10=Martin|last11=Kretz|first11=Keith|last12=Lin|first12=Xiaoying|last13=Mathur|first13=Eric|last14=Ni|first14=Jingwei|last15=Podar|first15=Mircea|last16=Richardson|first16=Toby|last17=Sutton|first17=Granger G.|last18=Simon|first18=Melvin|last19=Söll|first19=Dieter|last20=Stetter|first20=Karl O.|last21=Short|first21=Jay M.|last22=Noordewier|first22=Michiel|date=2003-10-28|title=The genome of ''Nanoarchaeum equitans'': Insights into early archaeal evolution and derived parasitism|url=http://www.pnas.org/content/100/22/12984|journal=Proceedings of the National Academy of Sciences|language=en|volume=100|issue=22|pages=12984–12988|doi=10.1073/pnas.1735403100|issn=0027-8424|pmc=PMC240731|pmid=14566062}}</ref><ref>Podar, M., Makarova, K. S., Graham, D. E., Wolf, Y. I., Koonin, E. V., Reysenbach, A. L. (2013). Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park. Biol. Direct 8:9</ref>
* [[Nanoarchaeota]]. They were the first discovered (in 2002) in a hydrothermal source next to the coast of Iceland. They live as symbionts of other archaea.<ref name="pmid14566062">{{cite journal | vauthors = Waters E, Hohn MJ, Ahel I, Graham DE, Adams MD, Barnstead M, Beeson KY, Bibbs L, Bolanos R, Keller M, Kretz K, Lin X, Mathur E, Ni J, Podar M, Richardson T, Sutton GG, Simon M, Soll D, Stetter KO, Short JM, Noordewier M | title = The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 100 | issue = 22 | pages = 12984–8 | date = October 2003 | pmid = 14566062 | pmc = 240731 | doi = 10.1073/pnas.1735403100 }}</ref><ref>{{cite journal | vauthors = Waters E, Hohn MJ, Ahel I, Graham DE, Adams MD, Barnstead M, Beeson KY, Bibbs L, Bolanos R, Keller M, Kretz K, Lin X, Mathur E, Ni J, Podar M, Richardson T, Sutton GG, Simon M, Soll D, Stetter KO, Short JM, Noordewier M | title = The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 100 | issue = 22 | pages = 12984–8 | date = October 2003 | pmid = 14566062 | pmc = 240731 | doi = 10.1073/pnas.1735403100 }}</ref><ref>{{cite journal | vauthors = Podar M, Makarova KS, Graham DE, Wolf YI, Koonin EV, Reysenbach AL | title = Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park. | journal = Biology Direct | date = December 2013 | volume = 8 | issue = 1 | pages = 9 }}</ref>
{{clear}}

== References ==
== References ==
{{reflist}}
{{reflist}}

Revision as of 19:17, 9 November 2018

DPANN
Nanoarchaeum equitans (the small symbionts on the right)
Scientific classification
Domain:
Superphylum:
DPANN group
Phyla

DPANN (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaea) is a superphylum of extremophile Archaea[1] first proposed in 2013.[2]

DPANN is an acronym formed by the initials of the first five groups discovered, Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota and Nanohaloarchaeota. Later Woesearchaeota and Pacearchaeota were discovered and proposed within the DPANN superphylum.[1] In 2017, another phylum Altiarchaeota was placed into this superphylum.[3]

The DPANN groups together different phyla with a variety of environmental distribution and metabolism, ranging from symbiotic and thermophilic forms such as Nanoarchaeota, acidophiles like Parvarchaeota and non-extremophiles like Aenigmarchaeota and Diapherotrites. DPANN was also detected in nitrate-rich groundwater, on the water surface but not below, indicating that these taxa are still quite difficult to locate.[4]

Classification

  • Diapherotrites. Found by phylogenetic analysis of the genomes recovered from the groundwater filtration of a gold mine abandoned in the USA.[5][6]
  • Parvarchaeota and Micrarchaeota. Discovered in 2006 in strongly acidic sewage from a US mine.<[7][8][9] They are of very small size and provisionally called ARMAN (Archaeal Richmond Mine Acidophilic Nanoorganisms).
  • Woesearchaeota and Pacearchaeota. They have been identified both in sediments and in surface waters of aquifers and lakes, abounding especially in saline conditions.[10][11]
  • Aenigmarchaeota. Found in wastewater from mines and in sediments from hot springs.[12]
  • Nanohaloarchaeota. Distributed in environments with high salinity.[13]
  • Nanoarchaeota. They were the first discovered (in 2002) in a hydrothermal source next to the coast of Iceland. They live as symbionts of other archaea.[14][15][16]

References

  1. ^ a b Castelle CJ, Wrighton KC, Thomas BC, Hug LA, Brown CT, Wilkins MJ, Frischkorn KR, Tringe SG, Singh A, Markillie LM, Taylor RC, Williams KH, Banfield JF (March 2015). "Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling". Current Biology. 25 (6): 690–701. doi:10.1016/j.cub.2015.01.014. PMID 25702576.
  2. ^ Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, Darling A, Malfatti S, Swan BK, Gies EA, Dodsworth JA, Hedlund BP, Tsiamis G, Sievert SM, Liu WT, Eisen JA, Hallam SJ, Kyrpides NC, Stepanauskas R, Rubin EM, Hugenholtz P, Woyke T (July 2013). "Insights into the phylogeny and coding potential of microbial dark matter". Nature. 499 (7459): 431–7. doi:10.1038/nature12352. PMID 23851394.
  3. ^ Anja Spang, Eva F. Caceres, Thijs J. G. Ettema (11 Aug 2017). "Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life". Science.{{cite web}}: CS1 maint: multiple names: authors list (link)
  4. ^ Ludington WB, Seher TD, Applegate O, Li X, Kliegman JI, Langelier C, Atwill ER, Harter T, DeRisi JL (2017-04-06). "Assessing biosynthetic potential of agricultural groundwater through metagenomic sequencing: A diverse anammox community dominates nitrate-rich groundwater". PloS One. 12 (4): e0174930. doi:10.1371/journal.pone.0174930. PMC 5383146. PMID 28384184.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  5. ^ Genomes Online Database
  6. ^ Comolli LR, Baker BJ, Downing KH, Siegerist CE, Banfield JF (February 2009). "Three-dimensional analysis of the structure and ecology of a novel, ultra-small archaeon". The ISME Journal. 3 (2): 159–67. doi:10.1038/ismej.2008.99. PMID 18946497.
  7. ^ Baker BJ, Tyson GW, Webb RI, Flanagan J, Hugenholtz P, Allen EE, Banfield JF (December 2006). "Lineages of acidophilic archaea revealed by community genomic analysis". Science (New York, N.Y.). 314 (5807): 1933–5. doi:10.1126/science.1132690. PMID 17185602.
  8. ^ Murakami S, Fujishima K, Tomita M, Kanai A (February 2012). "Metatranscriptomic analysis of microbes in an Oceanfront deep-subsurface hot spring reveals novel small RNAs and type-specific tRNA degradation". Applied and Environmental Microbiology. 78 (4): 1015–22. doi:10.1128/AEM.06811-11. PMC 3272989. PMID 22156430.
  9. ^ Baker BJ, Comolli LR, Dick GJ, Hauser LJ, Hyatt D, Dill BD, Land ML, Verberkmoes NC, Hettich RL, Banfield JF (May 2010). "Enigmatic, ultrasmall, uncultivated Archaea". Proceedings of the National Academy of Sciences of the United States of America. 107 (19): 8806–11. doi:10.1073/pnas.0914470107. PMC 2889320. PMID 20421484.
  10. ^ Castelle CJ, Wrighton KC, Thomas BC, Hug LA, Brown CT, Wilkins MJ, Frischkorn KR, Tringe SG, Singh A, Markillie LM, Taylor RC, Williams KH, Banfield JF (March 2015). "Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling". Current Biology : CB. 25 (6): 690–701. doi:10.1016/j.cub.2015.01.014. PMID 25702576.
  11. ^ Ortiz-Alvarez R, Casamayor EO (April 2016). "High occurrence of Pacearchaeota and Woesearchaeota (Archaea superphylum DPANN) in the surface waters of oligotrophic high-altitude lakes". Environmental Microbiology Reports. 8 (2): 210–7. doi:10.1111/1758-2229.12370. PMID 26711582.
  12. ^ Takai K, Moser DP, DeFlaun M, Onstott TC, Fredrickson JK (December 2001). "Archaeal diversity in waters from deep South African gold mines". Applied and Environmental Microbiology. 67 (12): 5750–60. doi:10.1128/AEM.67.21.5750-5760.2001. PMC 93369. PMID 11722932.
  13. ^ Narasingarao P, Podell S, Ugalde JA, Brochier-Armanet C, Emerson JB, Brocks JJ, Heidelberg KB, Banfield JF, Allen EE (January 2012). "De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities". The ISME Journal. 6 (1): 81–93. doi:10.1038/ismej.2011.78. PMC 3246234. PMID 21716304.
  14. ^ Waters E, Hohn MJ, Ahel I, Graham DE, Adams MD, Barnstead M, Beeson KY, Bibbs L, Bolanos R, Keller M, Kretz K, Lin X, Mathur E, Ni J, Podar M, Richardson T, Sutton GG, Simon M, Soll D, Stetter KO, Short JM, Noordewier M (October 2003). "The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism". Proceedings of the National Academy of Sciences of the United States of America. 100 (22): 12984–8. doi:10.1073/pnas.1735403100. PMC 240731. PMID 14566062.
  15. ^ Waters E, Hohn MJ, Ahel I, Graham DE, Adams MD, Barnstead M, Beeson KY, Bibbs L, Bolanos R, Keller M, Kretz K, Lin X, Mathur E, Ni J, Podar M, Richardson T, Sutton GG, Simon M, Soll D, Stetter KO, Short JM, Noordewier M (October 2003). "The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism". Proceedings of the National Academy of Sciences of the United States of America. 100 (22): 12984–8. doi:10.1073/pnas.1735403100. PMC 240731. PMID 14566062.
  16. ^ Podar M, Makarova KS, Graham DE, Wolf YI, Koonin EV, Reysenbach AL (December 2013). "Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park". Biology Direct. 8 (1): 9.

External links