Actinoscirpus: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
remove confusing addition of synonym to lede. Added it to box
m →‎Uses: Cleanup and typo fixing, typo(s) fixed: et al → et al. (2)
Line 15: Line 15:


== Uses ==
== Uses ==
The tubers of ''A. grossus'' are used in [[folk medicine]] as a treatment for liver disease, although experimental evidence to support this is limited. Ganapathi et al (2018) showed a protective effect of ethanolic extract of the ''A. grossus tubers'' when treating ethanol-induced [[hepatotoxicity]] in rats; treatment of the extract significantly restored the [[Liver enzyme|liver enzymes]], reduced lipid peroxidation, and restored altered catalase and glutathione peroxidase activity.<ref>{{Cite journal|date=2021-01-01|title=Protective effect of ethanolic extract of Actinoscirpus grossus tubers against ethanol induced liver toxicity in albino rats|url=https://www.sciencedirect.com/science/article/pii/S1018364720303670|journal=Journal of King Saud University - Science|language=en|volume=33|issue=1|pages=101253|doi=10.1016/j.jksus.2020.101253|issn=1018-3647}}</ref>
The tubers of ''A. grossus'' are used in [[folk medicine]] as a treatment for liver disease, although experimental evidence to support this is limited. Ganapathi et al. (2018) showed a protective effect of ethanolic extract of the ''A. grossus tubers'' when treating ethanol-induced [[hepatotoxicity]] in rats; treatment of the extract significantly restored the [[Liver enzyme|liver enzymes]], reduced lipid peroxidation, and restored altered catalase and glutathione peroxidase activity.<ref>{{Cite journal|date=2021-01-01|title=Protective effect of ethanolic extract of Actinoscirpus grossus tubers against ethanol induced liver toxicity in albino rats|url=https://www.sciencedirect.com/science/article/pii/S1018364720303670|journal=Journal of King Saud University - Science|language=en|volume=33|issue=1|pages=101253|doi=10.1016/j.jksus.2020.101253|issn=1018-3647}}</ref>


Studies have shown success using ''A. grossus'' and its associated [[rhizobacteria]] in improving water quality and removing contaminants through [[phytoremediation]].<ref>{{Cite journal|date=2020-01-01|title=Characterisation of Pb-resistant plant growth-promoting rhizobacteria (PGPR) from Scirpus grossus|url=https://www.sciencedirect.com/science/article/abs/pii/S1878818119300659|journal=Biocatalysis and Agricultural Biotechnology|language=en|volume=23|pages=101456|doi=10.1016/j.bcab.2019.101456|issn=1878-8181}}</ref> Syafrizal et al (2020) has shown success in reducing concentrations of ammonium, phosphate, [[Biochemical oxygen demand|BOD]], [[Chemical oxygen demand|COD]], and other measures of water quality.<ref>{{Cite journal|title=ShieldSquare Captcha|url=https://iopscience.iop.org/article/10.1088/1757-899X/796/1/012058/meta|language=en|doi=10.1088/1757-899x/796/1/012058/meta}}</ref> Additional studies have also shown success in reducing other contaminants, such as [[total suspended solids]], diesel, and lead, as well as remediating various forms of [[effluent]].<ref>{{Cite journal|date=2020-08-01|title=Utilisation of an aquatic plant (Scirpus grossus) for phytoremediation of real sago mill effluent|url=https://www.sciencedirect.com/science/article/abs/pii/S235218642031333X|journal=Environmental Technology & Innovation|language=en|volume=19|pages=101033|doi=10.1016/j.eti.2020.101033|issn=2352-1864}}</ref><ref>{{Cite journal|date=2019-02-01|title=Performance of continuous pilot subsurface constructed wetland using Scirpus grossus for removal of COD, colour and suspended solid in recycled pulp and paper effluent|url=https://www.sciencedirect.com/science/article/abs/pii/S2352186418304978|journal=Environmental Technology & Innovation|language=en|volume=13|pages=346–352|doi=10.1016/j.eti.2018.12.008|issn=2352-1864}}</ref>
Studies have shown success using ''A. grossus'' and its associated [[rhizobacteria]] in improving water quality and removing contaminants through [[phytoremediation]].<ref>{{Cite journal|date=2020-01-01|title=Characterisation of Pb-resistant plant growth-promoting rhizobacteria (PGPR) from Scirpus grossus|url=https://www.sciencedirect.com/science/article/abs/pii/S1878818119300659|journal=Biocatalysis and Agricultural Biotechnology|language=en|volume=23|pages=101456|doi=10.1016/j.bcab.2019.101456|issn=1878-8181}}</ref> Syafrizal et al. (2020) has shown success in reducing concentrations of ammonium, phosphate, [[Biochemical oxygen demand|BOD]], [[Chemical oxygen demand|COD]], and other measures of water quality.<ref>{{Cite journal|title=ShieldSquare Captcha|url=https://iopscience.iop.org/article/10.1088/1757-899X/796/1/012058/meta|language=en|doi=10.1088/1757-899x/796/1/012058/meta}}</ref> Additional studies have also shown success in reducing other contaminants, such as [[total suspended solids]], diesel, and lead, as well as remediating various forms of [[effluent]].<ref>{{Cite journal|date=2020-08-01|title=Utilisation of an aquatic plant (Scirpus grossus) for phytoremediation of real sago mill effluent|url=https://www.sciencedirect.com/science/article/abs/pii/S235218642031333X|journal=Environmental Technology & Innovation|language=en|volume=19|pages=101033|doi=10.1016/j.eti.2020.101033|issn=2352-1864}}</ref><ref>{{Cite journal|date=2019-02-01|title=Performance of continuous pilot subsurface constructed wetland using Scirpus grossus for removal of COD, colour and suspended solid in recycled pulp and paper effluent|url=https://www.sciencedirect.com/science/article/abs/pii/S2352186418304978|journal=Environmental Technology & Innovation|language=en|volume=13|pages=346–352|doi=10.1016/j.eti.2018.12.008|issn=2352-1864}}</ref>


== See also ==
== See also ==

Revision as of 12:50, 6 January 2022

Actinoscirpus
Actinoscirpus grossus
Scientific classification Edit this classification
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Monocots
Clade: Commelinids
Order: Poales
Family: Cyperaceae
Genus: Actinoscirpus
(Ohwi) R.W.Haines & Lye
Species:
A. grossus
Binomial name
Actinoscirpus grossus
(L.f.) Goetgh. & D.A.Simpson
Synonyms[1]
  • Genus: Hymenochaeta P.Beauv. ex T.Lestib.
  • Species: Scirpus grossus L.f.

Actinoscirpus is a monospecific genus in the family Cyperaceae which contains only the species Actinoscirpus grossus.[1] It is found across East and South Asia and is known in China as 大藨草 (da biao cao), rumput menderong in Malaysian, and kasheruka within Ayurvedic medicine, which uses the tubers as an antiemetic and treatment for liver and digestive diseases.[2][3] It is a perennial plant that grows rapidly with long rhizomes that end in small tubers. A. grossus is considered a "principal" weed of rice in some Southeast Asian countries. It is abundant in swampy or inundated areas, such as marshes and ditches, and is capable of dominating wetlands and rice patties. It is also a host of Chilo polychrysus, the dark-headed rice borer.

Uses

The tubers of A. grossus are used in folk medicine as a treatment for liver disease, although experimental evidence to support this is limited. Ganapathi et al. (2018) showed a protective effect of ethanolic extract of the A. grossus tubers when treating ethanol-induced hepatotoxicity in rats; treatment of the extract significantly restored the liver enzymes, reduced lipid peroxidation, and restored altered catalase and glutathione peroxidase activity.[4]

Studies have shown success using A. grossus and its associated rhizobacteria in improving water quality and removing contaminants through phytoremediation.[5] Syafrizal et al. (2020) has shown success in reducing concentrations of ammonium, phosphate, BOD, COD, and other measures of water quality.[6] Additional studies have also shown success in reducing other contaminants, such as total suspended solids, diesel, and lead, as well as remediating various forms of effluent.[7][8]

See also

References

  1. ^ a b "Actinoscirpus (Ohwi) R.W.Haines & Lye | Plants of the World Online | Kew Science". Plants of the World Online. Retrieved 2021-01-06.
  2. ^ "Actinoscirpus grossus in Flora of China @ efloras.org". www.efloras.org. Retrieved 2021-01-06.
  3. ^ "Utilisation of an aquatic plant (Scirpus grossus) for phytoremediation of real sago mill effluent". Environmental Technology & Innovation. 19: 101033. 2020-08-01. doi:10.1016/j.eti.2020.101033. ISSN 2352-1864.
  4. ^ "Protective effect of ethanolic extract of Actinoscirpus grossus tubers against ethanol induced liver toxicity in albino rats". Journal of King Saud University - Science. 33 (1): 101253. 2021-01-01. doi:10.1016/j.jksus.2020.101253. ISSN 1018-3647.
  5. ^ "Characterisation of Pb-resistant plant growth-promoting rhizobacteria (PGPR) from Scirpus grossus". Biocatalysis and Agricultural Biotechnology. 23: 101456. 2020-01-01. doi:10.1016/j.bcab.2019.101456. ISSN 1878-8181.
  6. ^ "ShieldSquare Captcha". doi:10.1088/1757-899x/796/1/012058/meta. {{cite journal}}: Cite journal requires |journal= (help)
  7. ^ "Utilisation of an aquatic plant (Scirpus grossus) for phytoremediation of real sago mill effluent". Environmental Technology & Innovation. 19: 101033. 2020-08-01. doi:10.1016/j.eti.2020.101033. ISSN 2352-1864.
  8. ^ "Performance of continuous pilot subsurface constructed wetland using Scirpus grossus for removal of COD, colour and suspended solid in recycled pulp and paper effluent". Environmental Technology & Innovation. 13: 346–352. 2019-02-01. doi:10.1016/j.eti.2018.12.008. ISSN 2352-1864.