Poliovirus

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Cyclonenim (talk | contribs) at 06:55, 9 October 2008 (Reverted 1 edit by 97.100.137.26 identified as vandalism to last revision by 189.192.59.176. (TW)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Poliovirus
TEM micrograph of poliovirus virions.
Virus classification
Group:
Group IV ((+)ssRNA)
Family:
Genus:
Species:
Poliovirus

Poliovirus, the causative agent of poliomyelitis, is a human enterovirus and member of the family of Picornaviridae.[1] Poliovirus is composed of a RNA genome and a protein capsid. The genome is single-stranded positive-sense RNA genome that is about 7500 nucleotides long.[2] The viral particle is about 300 Ångström in diameter with icosahedral symmetry. Because of its short genome and its simple composition—only RNA and a non-enveloped icosahedral protein coat that encapsulates it—poliovirus is widely regarded as the simplest significant virus.[3]

Poliovirus was first isolated in 1909 by Karl Landsteiner and Erwin Popper.[4] In 1981, the poliovirus genome was published by two different teams of researchers— by Vincent Racaniello and David Baltimore at MIT[5] and by Naomi Kitamura and others at the State University of New York, Stony Brook.[6] Poliovirus is one of the most well-characterized viruses, and has become a useful model system for understanding the biology of RNA viruses.

Life cycle

The cellular life cycle of poliovirus is initiated (1) by binding to the cell surface receptor CD155. The virion is taken up via endocytosis, and the viral RNA is released (2). Translation of the viral RNA occurs by an IRES-mediated mechanism (3). The polyprotein is cleaved, yielding mature viral proteins (4). The positive-sense RNA serves as template for complementary negative-strand synthesis, producing double-stranded replicative form (RF) RNA(5). Many positive strand RNA copies are produced from the single negative strand (6). The newly synthesized positive-sense RNA molecules can serve as templates for translation of more viral proteins (7) or can be enclosed in a capsid (8), which ultimately generates progeny virions. Lysis of the infected cell results in release of infectious progeny virions (9).[7]

Poliovirus infects human cells by binding to an immunoglobulin-like receptor, CD155, (also known as the poliovirus receptor (PVR))[8][9] on the cell surface.[10] Interaction of poliovirus and CD155 facilitates an irreversible conformational change of the viral particle necessary for viral entry.[11][12] The precise mechanism poliovirus uses to enter the host cell has not been firmly established.[13] Attached to the host cell membrane, entry of the viral nucleic acid was thought to occur one of two ways: via the formation of a pore in the plasma membrane through which the RNA is then “injected” into the host cell cytoplasm, or that the virus is taken up by receptor-mediated endocytosis.[14] Recent experimental evidence supports the latter hypothesis and suggests that poliovirus binds to CD155 and is taken up via endocytosis. Immediately after internalization of the particle, the viral RNA is released.[15] However, any mechanism by which poliovirus enters the cell is very inefficient; as an infection is initiated only about 1% of the time.[16]

Poliovirus is a positive stranded RNA virus. Thus the genome enclosed within the viral particle can be used as messenger RNA and immediately translated by the host cell. On entry the virus hijacks the cell's translation machinery; causing inhibition of cellular protein synthesis in favor of virus–specific protein production. Unlike the host cell's mRNAs the 5' end of poliovirus RNA is extremely long—over 700 nucleotides—and is highly structured. This region of the viral genome is called internal ribosome entry site (IRES) and it directs translation of the viral RNA. Genetic mutations in this region prevent viral protein production.[17][18][19]

Poliovirus mRNA is translated as one long polypeptide. This polypeptide is then cleaved into approximately 10 individual viral proteins, including:[3][16]

The genomic structure of poliovirus type 1[7] (see text or reference for further details).
  • 3Dpol, an RNA dependent RNA polymerase whose function is to copy and multiply the viral RNA genome.
  • 2Apro and 3Cpro/3CDpro, proteases which cleave the viral polypeptide.
  • VPg (3B), a small protein that binds viral RNA and is necessary for synthesis of viral positive and negative strand RNA.
  • 2BC, 2B, 2C, 3AB, 3A, 3B proteins which comprise the protein complex needed for virus replication.
  • VP0, VP1, VP2, VP3, VP4 proteins of the viral capsid.

The assembly of new virus particles, (i.e. the packaging of progeny genome into a capsid which can survive outside the host cell) is poorly understood.[14] Fully assembled poliovirus leaves the confines of its host cell 4 to 6 hours following initiation of infection in cultured mammalian cells.[20] The mechanism of viral release from the cell is unclear,[2] but each dying cell can release between 10,000 and 100,000 polio virions.[20]

Origin and serotypes

Poliovirus is structurally similar to other human enteroviruses (coxsackieviruses and echoviruses), as well as to human rhinoviruses, which also use immunoglobulin-like molecules to recognize and enter host cells.[9] Phylogenetic analysis of the RNA and protein sequences of poliovirus suggests that PV may have evolved from a C-cluster coxsackie A virus ancestor, that arose through a mutation within the capsid.[21] The distinct speciation of poliovirus probably occurred as a result of change in cellular receptor specificity from intercellular adhesion molecule-1 (ICAM-1), used by C-cluster coxsackie A viruses, to CD155; leading to a change in pathogenicity, and allowing the virus to infect nervous tissue.

There are three serotypes of poliovirus, PV1, PV2 , and PV3; each with a slightly different capsid protein. Capsid proteins define cellular receptor specificity and virus antigenicity. PV1 is the most common form encountered in nature, however all three forms are extremely infectious.[4] Wild polioviruses can be found in approximately 10 countries. PV1 is highly localized to regions in India, Pakistan, Afghanistan, and Egypt, but following outbreaks of poliomeyletis in 2003–2004 it remains widespread in West and Central Africa. Wild poliovirus type 2 has probably been eradicated; it was last detected in October 1999 in Uttar Pradesh, India.[22] Wild PV3 is found in parts of only five countries (Nigeria, Niger, Pakistan, India, and Sudan).[20]

Specific strains of each serotype are used to prepare vaccines against polio. Inactive polio vaccine (IPV) is prepared by formalin inactivation of three wild, virulent reference strains, Mahoney or Brunenders (PV1), MEF-1/Lansing (PV2), and Saukett/Leon (PV3). Oral polio vaccine (OPV) contains live attenuated (weakened) strains of the three serotypes of poliovirus. Passaging the virus strains in monkey kidney epithelial cells introduces mutations in the viral IRES, and hinders (or attenuates) the ability of the virus to infect nervous tissue.[20]

Pathogenesis

Electron micrograph of poliovirus.

The primary determinant of infection for any virus is its ability to enter a cell and produce additional infectious particles. The presence of CD155 is thought to define the animals and tissues that can be infected by poliovirus. CD155 is found only on the cells of humans, higher primates, and Old World monkeys. Poliovirus is however strictly a human pathogen, and does not naturally infect any other species (although chimpanzees and Old World monkeys can be experimentally infected).[23]

Poliovirus is an enterovirus. Infection occurs via the fecal-oral route; meaning that one ingests the virus and it is within the alimentary tract that virus replication occurs.[24] Virus is shed in the feces of infected individuals. In 95% of cases only a primary, transient presence of the virus in the bloodstream occurs (called a viremia) and the poliovirus infection is asymptomatic. In about 5% of cases, the virus spreads, and replicates in other sites such as brown fat, the reticuloendothelial tissues, and muscle. This sustained replication causes a secondary viremia, and leads to the development of minor symptoms such as fever, headache and sore throat.[25] Paralytic poliomyletis occurs in less than 1% of poliovirus infections. Paralytic disease occurs when the virus enters the central nervous system (CNS) and replicates in motor neurons within the spinal cord, brain stem, or motor cortex, resulting in the selective destruction of motor neurons; leading to either temporary or permanent paralysis and, in rare cases, to respiratory arrest and death. In many respects this neurological phase of infection is thought to be an accidental diversion of the normal gastrointestinal infection.[14]

The mechanisms by which poliovirus enters the CNS are poorly understood. Three theories have been suggested to explain its entry, which are not mutually exclusive; all require that the virus first be present in the blood (viremia). One theory is that virus passes directly from the blood into the central nervous system by crossing the blood brain barrier, independent of CD155.[26] A second hypothesis suggests that the virus is transported from the muscle to the spinal cord through nerve pathways by retrograde axonal transport.[27][28] A third hypothesis is that the virus is imported into the CNS by infected monocytes or macrophages.[7]

Poliomyelitis is a disease of the central nervous system. However, CD155 is believed to be present on the surface of most or all human cells, so receptor expression does not explain why poliovirus preferentially infects certain tissues. This suggests that tissue tropism is determined after cellular infection. Recent work has suggested that the type I interferon response (specifically that of interferon alpha and beta) is an important factor that defines which types of cells support poliovirus replication.[29] In mice expressing CD155 but lacking the type I interferon receptor, poliovirus not only replicates in tissues where it normally would not, but these mice are also able to be infected orally with the virus.[30]

Immune system avoidance

Poliovirus uses two key mechanisms to evade the immune system. First, it is capable of surviving the highly acidic conditions of the gastrointestinal tract, allowing the virus to infect the host and spread throughout the body via the lymphatic system.[3] Second, because it can replicate very quickly, the virus overwhelms the host organs before an immune response can be mounted.[5]

Individuals who are exposed to poliovirus, either through infection or by immunization with polio vaccine, develop immunity. In immune individuals, antibodies against poliovirus are present in the tonsils and gastrointestinal tract (specifically IgA antibodies) and are able to block poliovirus replication; IgG and IgM antibodies against poliovirus can prevent the spread of the virus to motor neurons of the central nervous system.[20] Infection with one serotype of poliovirus does not provide immunity against the other serotypes, however second attacks within the same individual are extremely rare.

PVR transgenic mouse

Although humans are the only known natural hosts of poliovirus, monkeys can be experimentally infected and they have long been used to study poliovirus. In 1990-91, a small animal model of poliomyelitis was developed by two laboratories. Mice were engineered to express a human receptor to poliovirus (hPVR).[31][32]

Unlike normal mice, transgenic poliovirus receptor (TgPVR) mice are susceptible to poliovirus injected intravenously or intramuscularly, and when injected directly into the spinal cord or the brain.[33] Upon infection, TgPVR mice show signs of paralysis that resemble those of poliomyelitis in humans and monkeys, and the central nervous systems of paralyzed mice are histocytochemically similar to those of humans and monkeys. This mouse model of human poliovirus infection has proven to be an invaluable tool in understanding poliovirus biology and pathogenicity.[34]

Three distinct types of TgPVR mice have been well studied:[35]

  • In TgPVR1 mice the transgene encoding the human PVR was incorporated into mouse chromosome 4. These mice express the highest levels of the transgene and the highest sensitivity to poliovirus. TgPVR1 mice are susceptible to poliovirus through the intraspinal, intracerebral, intramuscular, and intravenous pathways, but not through the oral route.
  • TgPVR21 mice have incorporated the human PVR at chromosome 13. These mice are less susceptible to poliovirus infection through the intracerebral route, possibly because they express decreased levels of hPVR. TgPVR21 mice have been shown to be susceptible to poliovirus infection through intranasal inoculation, and may be useful as a mucosal infection model.[36]
  • In TgPVR5 mice the human transgene is located on chromosome 12. These mice exhibit the lowest levels of hPVR expression and are the least susceptible to poliovirus infection.

Recently a forth TgPVR mouse model was developed. These "cPVR" mice carry hPVR cDNA, driven by a β-actin promoter, and have proven susceptible to poliovirus through intracerebral, intramuscular, and intranasal routes. In addition, these mice are capable of developing the bulbar form of polio after intranasal inoculation.[36]

The development of the TgPVR mouse has had a profound effect on oral poliovirus vaccine (OPV) production. Previously, monitoring the safety of OPV had to be performed using monkeys, because only primates are susceptible to the virus. In 1999 the World Health Organization approved the use of the TgPVR mouse as an alternative method of assessing the effectiveness of the vaccine against poliovirus type-3. In 2000 the mouse model was approved for tests of vaccines against type-1 and type-2 poliovirus.[37]

Cloning and synthesis

File:Poliovirus.png
The structural appearance of Poliovirus.

In 1981 Racaniello and Baltimore used recombinant DNA technology to generate the first infectious clone of an animal RNA virus, poliovirus. DNA encoding the RNA genome of poliovirus was introduced into cultured mammalian cells and infectious poliovirus was produced.[38] Creation of the infectious clone propelled understanding of poliovirus biology, and has become a standard technology used to study many other viruses.

In 2002 researchers at SUNY Stony Brook succeeded in synthesizing poliovirus from its chemical code, producing the world's first synthetic virus.[39] Scientists first converted poliovirus's published RNA sequence, 7741 bases long, into a DNA sequence, as DNA was easier to synthesize. Short fragments of this DNA sequence were obtained by mail-order, and assembled. The complete viral genome was then assembled by a gene synthesis company. This whole painstaking process took two years. Nineteen markers were incorporated into the synthesized DNA, so that it could be distinguished from natural poliovirus. Enzymes were used to convert the DNA back into RNA, its natural state. Other enzymes were then used to translate the RNA into a polypeptide, producing functional viral particle. The newly minted synthetic virus was injected into PVR transgenic mice, to determine if the synthetic version was able to cause disease. The synthetic virus was able to replicate, infect, and cause paralysis or death in mice. However, the synthetic version was between 1,000 and 10,000 times less lethal than the original virus.[40]

References

  1. ^ Ryan KJ, Ray CG (editors) (2004). Sherris Medical Microbiology (4th ed. ed.). McGraw Hill. ISBN 0838585299. {{cite book}}: |author= has generic name (help); |edition= has extra text (help)
  2. ^ a b Hogle J (2002). "Poliovirus cell entry: common structural themes in viral cell entry pathways". Annu Rev Microbiol. 56: 677–702. doi:10.1146/annurev.micro.56.012302.160757. PMID 12142481.
  3. ^ a b c Goodsell DS (1998). The machinery of life. New York: Copernicus. ISBN 0-387-98273-6.
  4. ^ a b Paul JR (1971). A History of Poliomyelitis. (Yale studies in the history of science and medicine). New Haven, Conn: Yale University Press. ISBN 0-300-01324-8.
  5. ^ a b Racaniello and Baltimore (1981). "Molecular cloning of poliovirus cDNA and determination of the complete nucleotide sequence of the viral genome". Proceedings of the National Academy Science USA. 78 (8): 4887–4891. doi:10.1073/pnas.78.8.4887. PMID 6272282. Cite error: The named reference "Racaniello" was defined multiple times with different content (see the help page).
  6. ^ Kitamura N, Semler B, Rothberg P; et al. (1981). "Primary structure, gene organization and polypeptide expression of poliovirus RNA". Nature. 291 (5816): 547–53. doi:10.1038/291547a0. PMID 6264310. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  7. ^ a b c De Jesus NH (2007). "Epidemics to eradication: the modern history of poliomyelitis". Virol. J. 4: 70. doi:10.1186/1743-422X-4-70. PMID 17623069.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  8. ^ Mendelsohn Cl, Wimmer E, Racaniello VR (1989). "Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobin superfamily". Cell. 56 (5): 855–865. doi:10.1016/0092-8674(89)90690-9. PMID 2538245.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. ^ a b He Y, Mueller S, Chipman P; et al. (2003). "Complexes of poliovirus serotypes with their common cellular receptor, CD155". J Virol. 77 (8): 4827–35. doi:10.1128/JVI.77.8.4827-4835.2003. PMID 12663789. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  10. ^ Dunnebacke TH, Levinthal JD, Williams RC (1969). "Entry and release of poliovirus as observed by electron microscopy of cultured cells". Journal of Virology. 4 (4): 505–513. PMID 4309884.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. ^ Kaplan G, Freistadat MS, Racaniello VR, (1990). "Neutralization of poliovirus by cell receptors expressed in insect cells". Journal of Virology. 60 (10): 4697–4702. PMID 2168959.{{cite journal}}: CS1 maint: extra punctuation (link) CS1 maint: multiple names: authors list (link)
  12. ^ Gomez Yafal A, Kaplan G, Racaniello VR, Hogle, JM (1993). "Characterization of poliovirus conformational alteration mediated by soluble cell receptors". Virology. 197 (1): 501–505. doi:10.1006/viro.1993.1621. PMID 8212594.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. ^ Picornaviruses: The Enteroviruses: Polioviruses in: Baron's Medical Microbiology (Baron S et al, eds.) (4th ed. ed.). Univ of Texas Medical Branch. 1996. ISBN 0-9631172-1-1. {{cite book}}: |edition= has extra text (help)
  14. ^ a b c Mueller S, Wimmer E, Cello J (2005). "Poliovirus and poliomyelitis: a tale of guts, brains, and an accidental event". Virus Res. 111 (2): 175–93. doi:10.1016/j.virusres.2005.04.008. PMID 15885840.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  15. ^ Brandenburg B, Lee LY, Lakadamyali M, Rust MJ, Zhuang X, Hogle JM, (2007). "Imaging poliovirus entry in live cells". PLOS Biology. 5 (7): e183. doi:10.1371/journal.pbio.0050183. PMID 17622193.{{cite journal}}: CS1 maint: extra punctuation (link) CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  16. ^ a b Charles Chan and Roberto Neisa. "Poliomyelitis". Brown University.
  17. ^ Chen CY, Sarnow P (1995). "Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs". Science. 268 (5209): 415–417. doi:10.1126/science.7536344. PMID 7536344.
  18. ^ Pelletier J, Sonenberg N (1988). "Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA". Nature. 334 (6180): 320–325. doi:10.1038/334320a0. PMID 2839775.
  19. ^ Jang SK, Krausslich HG, Nicklin MJ, Duke GM, Palmenberg AC, Wimmer E (1988). "A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosome during in vitro translation". Journal of Virology. 62 (8): 2636–2643. PMID 2839690.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  20. ^ a b c d e Kew O, Sutter R, de Gourville E, Dowdle W, Pallansch M (2005). "Vaccine-derived polioviruses and the endgame strategy for global polio eradication". Annu Rev Microbiol. 59: 587–635. doi:10.1146/annurev.micro.58.030603.123625. PMID 16153180.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  21. ^ Jiang P, Faase JA, Toyoda H; et al. (2007). "Evidence for emergence of diverse polioviruses from C-cluster coxsackie A viruses and implications for global poliovirus eradication". Proc. Natl. Acad. Sci. U.S.A. 104 (22): 9457–62. doi:10.1073/pnas.0700451104. PMID 17517601. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  22. ^ "Transmission of wild poliovirus type 2--apparent global interruption". Wkly. Epidemiol. Rec. 76 (13): 95–7. 2001. PMID 11315462. {{cite journal}}: Unknown parameter |month= ignored (help)
  23. ^ Mueller S, Wimmer E (2003). "Recruitment of nectin-3 to cell-cell junctions through trans-heterophilic interaction with CD155, a vitronectin and poliovirus receptor that localizes to alpha(v)beta3 integrin-containing membrane microdomains". J Biol Chem. 278 (33): 31251–60. doi:10.1074/jbc.M304166200. PMID 12759359.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  24. ^ Bodian D and Horstmann DH (1969). Polioviruse. Philadelphia, Penn: Lippincott. pp. 430–473.
  25. ^ Sabin A (1956). "Pathogenesis of poliomyelitis; reappraisal in the light of new data". Science. 123 (3209): 1151–7. doi:10.1126/science.123.3209.1151. PMID 13337331.
  26. ^ Yang W, Terasaki T, Shiroki K; et al. (1997). "Efficient delivery of circulating poliovirus to the central nervous system independently of poliovirus receptor". Virology. 229 (2): 421–8. doi:10.1006/viro.1997.8450. PMID 9126254. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  27. ^ Ohka S. Yang WX, Terada E, Iwasaki K, Nomot A (1998). "Retrograde transport of intact poliovirus through the axon via the first transport system". Virology. 250 (1): 67–75. doi:10.1006/viro.1998.9360. PMID 9770421.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  28. ^ Ren R, Racaniello V (1992). "Poliovirus spreads from muscle to the central nervous system by neural pathways". J Infect Dis. 166 (4): 747–52. PMID 1326581.
  29. ^ Ida-Hosonuma M, Iwasaki T, Yoshikawa T, Nagata N, Sato Y, Sata T, Yoneyama M, Fujita T, Taya C, Yonekawa H, Koike S (2005). "The alpha/beta interferon response controls tissue tropism and pathogencicity of poliovirus". Journal of Virology. 79 (7): 4460–4469. doi:10.1128/JVI.79.7.4460-4469.2005. PMID 15767446.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  30. ^ Ohka S, Igarashi H, Sakai M, Koike S, Nochi T, Kiyono A, Nomoto A (2007). "Esstablishment of a poliovirus oral infection system in human poliovirus receptor-expressing transgenic mice that are deficient in alpha/beta interferon receptor". Journal of Virology. 81 (15): 7902–7912. doi:10.1128/JVI.02675-06. PMID 17507470.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  31. ^ Ren RB, Costantini F, Gorgacz EJ, Lee JJ, Racaniello VR (1990). "Transgenic mice expressing a human poliovirus receptor: a new model for poliomyelitis". Cell. 63 (2): 353–62. doi:10.1016/0092-8674(90)90168-E. PMID 2170026.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  32. ^ Koike S, Taya C, Kurata T; et al. (1991). "Transgenic mice susceptible to poliovirus". Proc. Natl. Acad. Sci. U.S.A. 88 (3): 951–5. doi:10.1073/pnas.88.3.951. PMID 1846972. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  33. ^ Horie H, Koike S, Kurata T; et al. (1994). "Transgenic mice carrying the human poliovirus receptor: new animal models for study of poliovirus neurovirulence". J. Virol. 68 (2): 681–8. PMID 8289371. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  34. ^ Ohka S, Nomoto A (2001). "Recent insights into poliovirus pathogenesis". Trends Microbiol. 9 (10): 501–6. doi:10.1016/S0966-842X(01)02200-4. PMID 11597452.
  35. ^ Koike S, Taya C, Aoki J; et al. (1994). "Characterization of three different transgenic mouse lines that carry human poliovirus receptor gene--influence of the transgene expression on pathogenesis". Arch. Virol. 139 (3–4): 351–63. doi:10.1007/BF01310797. PMID 7832641. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  36. ^ a b Nagata N, Iwasaki T, Ami Y; et al. (2004). "A poliomyelitis model through mucosal infection in transgenic mice bearing human poliovirus receptor, TgPVR21". Virology. 321 (1): 87–100. doi:10.1016/j.virol.2003.12.008. PMID 15033568. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  37. ^ Dragunsky E, Nomura T, Karpinski K; et al. (2003). "Transgenic mice as an alternative to monkeys for neurovirulence testing of live oral poliovirus vaccine: validation by a WHO collaborative study". Bull. World Health Organ. 81 (4): 251–60. PMID 12764491. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  38. ^ Racaniello V, Baltimore D (1981). "Cloned poliovirus complemenatry DNA is infectious in mammalian cells". Science. 214 (453): 916–919. doi:10.1126/science.6272391. PMID 6272391.
  39. ^ Cello J, Paul AV, Wimmer E (2002). "Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template". Science. 297 (5583): 1016–8. doi:10.1126/science.1072266. PMID 12114528.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  40. ^ Couzin J (2002). "Virology. Active poliovirus baked from scratch". Science. 297 (5579): 174–5. doi:10.1126/science.297.5579.174b. PMID 12114601.

External links