(36,15,6) block plan

from Wikipedia, the free encyclopedia

The (36,15,6) block plan is a special symmetrical block plan . In order to be able to construct it, this combinatorial problem had to be solved: an empty 36 × 36 matrix was filled with ones in such a way that each row of the matrix contains exactly 15 ones and any two rows have exactly 6 ones in the same column (not more and not less). That sounds relatively simple, but it is not trivial to solve. There are only certain combinations of parameters (like here v = 36, k = 15, λ = 6) for which such a construction is feasible. The smallest of these (v, k, λ) are listed in this overview .

properties

This symmetrical block diagram has the parameters v = 36, k = 15, λ = 6 and thus the following properties:

  • It consists of 36 blocks and 36 points.
  • Each block contains exactly 15 points.
  • Every 2 blocks intersect in exactly 6 points.
  • Each point lies on exactly 15 blocks.
  • Each 2 points are connected by exactly 6 blocks.

Existence and characterization

There are at least 25634 non-isomorphic 2- (36,15,6) -block plans. One of these solutions is:

  • Solution 1 with the signature 9 x 2, 6 x 3, 3 x 6, 3 x 8, 6 x 9, 4 x 12, 3 x 20, 2 x 51. It contains 16 ovals of the 3rd order.

List of blocks

All the blocks of this block plan are listed here; See this illustration to understand this list

  • Solution 1
  2   3   4   5   6   7   8   9  10  11  12  13  14  15  16
  1   3   4   5   6   7   8  17  18  19  20  21  22  23  24
  1   2   4   5   6   7   8  25  26  27  28  29  30  31  32
  1   2   3   5   9  10  11  17  18  19  25  26  27  33  34
  1   2   3   4   9  10  11  20  21  22  28  29  30  35  36
  1   2   3   7  12  13  14  17  18  23  28  29  31  33  35
  1   2   3   6  12  13  14  20  21  24  25  26  32  34  36
  1   2   3   9  12  15  16  19  22  23  24  27  30  31  32
  1   4   5   8  12  13  14  19  22  27  30  33  34  35  36
  1   4   5  11  12  15  16  17  20  23  25  28  31  34  36
  1   4   5  10  12  15  16  18  21  24  26  29  32  33  35
  1   6   7   8   9  10  11  23  24  31  32  33  34  35  36
  1   6   7   9  14  15  16  17  20  22  26  29  30  33  34
  1   6   7   9  13  15  16  18  19  21  25  27  28  35  36
  1   8  10  11  13  14  16  17  19  21  22  25  29  31  32
  1   8  10  11  13  14  15  18  20  23  24  26  27  28  30
  2   4   6  10  13  15  19  21  22  23  26  28  31  33  34
  2   4   6  11  14  16  19  20  23  24  25  27  29  33  35
  2   4   8   9  14  15  17  18  21  23  25  30  32  33  36
  2   5   7  10  13  16  18  22  23  24  25  29  30  34  36
  2   5   7  11  14  15  17  19  22  24  26  28  32  35  36
  2   5   8   9  13  15  17  20  21  24  27  29  31  34  35
  2   6   8  10  12  16  17  18  19  20  28  30  32  34  35
  2   7   8  11  12  16  18  20  21  22  26  27  31  33  36
  3   4   7  10  14  15  18  19  20  27  29  31  32  34  36
  3   4   7  11  13  16  17  21  24  27  28  30  32  33  34
  3   4   8   9  14  16  18  22  24  25  26  28  31  34  35
  3   5   6  10  14  16  17  21  23  26  27  30  31  35  36
  3   5   6  11  13  15  18  20  22  25  30  31  32  33  35
  3   5   8   9  13  16  19  20  23  26  28  29  32  33  36
  3   6   8  10  12  15  17  22  24  25  27  28  29  33  36
  3   7   8  11  12  15  19  21  23  25  26  29  30  34  35
  4   6   9  11  12  13  17  18  19  24  26  29  30  31  36
  4   7   9  10  12  13  17  20  22  23  25  26  27  32  35
  5   6   9  11  12  14  18  21  22  23  27  28  29  32  34
  5   7   9  10  12  14  19  20  21  24  25  28  30  31  33

Incidence matrix

This is a representation of the incidence matrix of this block diagram; see this illustration to understand this matrix

  • Solution 1
. O O O O O O O O O O O O O O O . . . . . . . . . . . . . . . . . . . .
O . O O O O O O . . . . . . . . O O O O O O O O . . . . . . . . . . . .
O O . O O O O O . . . . . . . . . . . . . . . . O O O O O O O O . . . .
O O O . O . . . O O O . . . . . O O O . . . . . O O O . . . . . O O . .
O O O O . . . . O O O . . . . . . . . O O O . . . . . O O O . . . . O O
O O O . . . O . . . . O O O . . O O . . . . O . . . . O O . O . O . O .
O O O . . O . . . . . O O O . . . . . O O . . O O O . . . . . O . O . O
O O O . . . . . O . . O . . O O . . O . . O O O . . O . . O O O . . . .
O . . O O . . O . . . O O O . . . . O . . O . . . . O . . O . . O O O O
O . . O O . . . . . O O . . O O O . . O . . O . O . . O . . O . . O . O
O . . O O . . . . O . O . . O O . O . . O . . O . O . . O . . O O . O .
O . . . . O O O O O O . . . . . . . . . . . O O . . . . . . O O O O O O
O . . . . O O . O . . . . O O O O . . O . O . . . O . . O O . . O O . .
O . . . . O O . O . . . O . O O . O O . O . . . O . O O . . . . . . O O
O . . . . . . O . O O . O O . O O . O . O O . . O . . . O . O O . . . .
O . . . . . . O . O O . O O O . . O . O . . O O . O O O . O . . . . . .
. O . O . O . . . O . . O . O . . . O . O O O . . O . O . . O . O O . .
. O . O . O . . . . O . . O . O . . O O . . O O O . O . O . . . O . O .
. O . O . . . O O . . . . O O . O O . . O . O . O . . . . O . O O . . O
. O . . O . O . . O . . O . . O . O . . . O O O O . . . O O . . . O . O
. O . . O . O . . . O . . O O . O . O . . O . O . O . O . . . O . . O O
. O . . O . . O O . . . O . O . O . . O O . . O . . O . O . O . . O O .
. O . . . O . O . O . O . . . O O O O O . . . . . . . O . O . O . O O .
. O . . . . O O . . O O . . . O . O . O O O . . . O O . . . O . O . . O
. . O O . . O . . O . . . O O . . O O O . . . . . . O . O . O O . O . O
. . O O . . O . . . O . O . . O O . . . O . . O . . O O . O . O O O . .
. . O O . . . O O . . . . O . O . O . . . O . O O O . O . . O . . O O .
. . O . O O . . . O . . . O . O O . . . O . O . . O O . . O O . . . O O
. . O . O O . . . . O . O . O . . O . O . O . . O . . . . O O O O . O .
. . O . O . . O O . . . O . . O . . O O . . O . . O . O O . . O O . . O
. . O . . O . O . O . O . . O . O . . . . O . O O . O O O . . . O . . O
. . O . . . O O . . O O . . O . . . O . O . O . O O . . O O . . . O O .
. . . O . O . . O . O O O . . . O O O . . . . O . O . . O O O . . . . O
. . . O . . O . O O . O O . . . O . . O . O O . O O O . . . . O . . O .
. . . . O O . . O . O O . O . . . O . . O O O . . . O O O . . O . O . .
. . . . O . O . O O . O . O . . . . O O O . . O O . . O . O O . O . . .

oval

An oval of the block plan is a set of its points, no three of which are on a block. Here are all 16 ovals of maximum order for solution 1 of this block diagram (in each line an oval is represented by the set of its points):

  • Solution 1 (all ovals)
  8  17  26
  8  18  29  
  8  20  25   
  8  21  28  
  9  17  28   
  9  18  20   
  9  21  26  
  9  25  29
 12  17  21 
 12  18  25  
 12  20  29  
 12  26  28  
 19  24  34  
 19  31  35 
 24  30  35   
 30  31  34

literature

Individual evidence

  1. ^ Rudolf Mathon, Alexander Rosa : 2- (ν, κ, λ) Designs of Small Order. In: Charles J. Colbourn , Jeffrey H. Dinitz (Eds.): Handbook of Combinatorial Designs. 2nd edition. Chapman and Hall / CRC, Boca Raton FL et al. 2007, ISBN 978-1-4200-1054-1 , pp. 25-57.