Separable σ-algebra
In measure theory , a σ-algebra is called separable or countably generated if it can be generated from a countable number of sets.
The separability of a σ-algebra plays a role in the question of when a -space is separable as a topological space .
example
The Borelian algebras im are separable, because they are generated by the cuboids with rational endpoints (or also by the dyadic unit cells ).
literature
- Jürgen Elstrodt: Measure and integration theory . 6th, corrected edition. Springer-Verlag, Berlin Heidelberg 2009, ISBN 978-3-540-89727-9 , doi : 10.1007 / 978-3-540-89728-6 .
- Ludger Rüschendorf: Mathematical Statistics . Springer Verlag, Berlin, Heidelberg 2014, ISBN 978-3-642-41996-6 , doi : 10.1007 / 978-3-642-41997-3 .