Barrer (after Richard Maling Barrer ) is a unit in the technical measurement system ( no SI unit ) for the gas permeability of substances. The unit will u. a. used in describing the properties of membranes and sealing materials.
A comparable unit that describes the permeability of porous substances for liquids is the Darcy .
definition
Deviating from the permeability (SI unit m²), the permeability is defined in the Barrer's sense as:
K
{\ displaystyle K}
K
η
=
Q
x
A.
Δ
p
{\ displaystyle {\ frac {K} {\ eta}} = {\ frac {Q \, x} {A \, \ Delta p}}}
With
the dynamic viscosity (SI unit )
η
{\ displaystyle \ eta}
N
⋅
s
m
2
=
k
G
m
⋅
s
{\ displaystyle {\ tfrac {\ mathrm {N} \ cdot \ mathrm {s}} {\ mathrm {m} ^ {2}}} = {\ tfrac {\ mathrm {kg}} {\ mathrm {m} \ cdot \ mathrm {s}}}}
the flow rate (permeation rate) through the material, based on the volume under standard conditions and therefore given in cm 3 / s
Q
{\ displaystyle Q}
the thickness of the material in cm
x
{\ displaystyle x}
the flowed through area in cm 2
A.
{\ displaystyle A}
the pressure difference in cmHg .
Δ
p
{\ displaystyle \ Delta p}
The Barrer is defined as:
1
Barrer
=
10
-
10
c
m
3
s
⋅
c
m
c
m
2
⋅
c
m
H
G
=
10
-
10
c
m
3
s
⋅
c
m
⋅
c
m
H
G
{\ displaystyle {\ begin {aligned} 1 \ {\ text {Barrer}} & = 10 ^ {- 10} \, {\ frac {\ mathrm {cm} ^ {3}} {\ mathrm {s}}} \ cdot {\ frac {\ mathrm {cm}} {\ mathrm {cm} ^ {2} \ cdot \ mathrm {cmHg}}} \\ & = 10 ^ {- 10} \, {\ frac {\ mathrm { cm} ^ {3}} {\ mathrm {s} \ cdot \ mathrm {cm} \ cdot \ mathrm {cmHg}}} \ end {aligned}}}
Conversion in SI units:
1
Barrer
≈
10
-
10
10
-
6th
m
3
s
⋅
10
-
2
m
⋅
1.333
22nd
⋅
10
3
P
a
≈
7,500
6th
⋅
10
-
18th
m
3
s
⋅
m
⋅
P
a
≈
7,500
6th
⋅
10
-
18th
m
3
⋅
s
k
G
{\ displaystyle {\ begin {aligned} 1 \ {\ text {Barrer}} & \ approx 10 ^ {- 10} \, {\ frac {10 ^ {- 6} \, {\ mathrm {m} ^ {3 }}} {s \ cdot 10 ^ {- 2} \, \ mathrm {m} \ cdot 1 {,} 33322 \ cdot 10 ^ {3} \, \ mathrm {Pa}}} \\ & \ approx 7 { ,} 5006 \ cdot 10 ^ {- 18} \, {\ frac {\ mathrm {m} ^ {3}} {\ mathrm {s} \ cdot \ mathrm {m} \ cdot \ mathrm {Pa}}} \ \ & \ approx 7 {,} 5006 \ cdot 10 ^ {- 18} \, {\ frac {{\ mathrm {m} ^ {3}} \ cdot \ mathrm {s}} {\ mathrm {kg}}} \ end {aligned}}}
Additional calculation: the flow rate can also be represented in mol / s using the ideal gas law (see molar volume ):
p
⋅
V
=
n
⋅
R.
m
⋅
T
⇔
Q
=
V
t
=
n
t
R.
m
⋅
T
p
⇔
n
˙
=
Q
⋅
p
R.
m
⋅
T
⇒
1
m
3
s
⋅
101325
P
a
8.314
J
m
O
l
K
⋅
273
,
15th
K
≈
44
,
6th
m
O
l
s
{\ displaystyle {\ begin {aligned} p \ cdot V & = n \ cdot R _ {\ mathrm {m}} \ cdot T \\\ Leftrightarrow Q = {\ frac {V} {t}} & = {\ frac { n} {t}} \, {\ frac {R _ {\ mathrm {m}} \ cdot T} {p}} \\\ Leftrightarrow {\ dot {n}} & = {\ frac {Q \ cdot p} {R _ {\ mathrm {m}} \ cdot T}} \\\ Rightarrow 1 \, {\ frac {\ mathrm {m} ^ {3}} {\ mathrm {s}}} \ cdot {\ frac {101325 \, \ mathrm {Pa}} {8 {,} 314 \, {\ tfrac {\ mathrm {J}} {\ mathrm {mol} \, \ mathrm {K}}} \ cdot 273 {,} 15 \, \ mathrm {K}}} & \ approx 44 {,} 6 \, {\ frac {\ mathrm {mol}} {\ mathrm {s}}} \ end {aligned}}}
With
This results in:
⋯
⇒
1
Barrer
≈
7,500
6th
⋅
10
-
18th
⋅
44
,
6th
m
O
l
⋅
s
k
G
≈
3.346
⋅
10
-
16
m
O
l
⋅
s
k
G
{\ displaystyle {\ begin {aligned} \ dots \ Rightarrow 1 \ {\ text {Barrer}} & \ approx 7 {,} 5006 \ cdot 10 ^ {- 18} \ cdot 44 {,} 6 \, \ mathrm { mol} \ cdot {\ frac {\ mathrm {s}} {\ mathrm {kg}}} \\ & \ approx 3 {,} 346 \ cdot 10 ^ {- 16} \, {\ frac {\ mathrm {mol } \ cdot \ mathrm {s}} {\ mathrm {kg}}} \ end {aligned}}}
Permeation rate
The rate of gas permeation follows the direction of the partial pressure difference:
⋯
⇔
Q
=
K
A.
Δ
p
η
x
{\ displaystyle \ dots \ Leftrightarrow Q = {\ frac {K \, A \, \ Delta p} {\ eta \, x}}}
It increases linearly with the pressure and with the penetration cross-section, it decreases linearly with the length of the permeation path and behaves like a molecular flow .
Permeation coefficient
In leak detection technology, instead of the permeation rate, you specify the product with the pressure difference , i.e. the power loss
Q
{\ displaystyle Q}
Δ
p
{\ displaystyle \ Delta p}
P
=
Δ
p
⋅
Q
{\ displaystyle P = \ Delta p \ cdot Q}
The permeation coefficient defines the permeation behavior of a gas-to-material combination:
C.
{\ displaystyle C}
C.
=
10
8th
⋅
P
⋅
x
A.
⋅
Δ
p
=
10
8th
⋅
Q
⋅
x
A.
=
10
8th
⋅
K
η
⋅
Δ
p
{\ displaystyle {\ begin {aligned} C & = 10 ^ {8} \ cdot {\ frac {P \ cdot x} {A \ cdot \ Delta p}} \\ & = 10 ^ {8} \ cdot {\ frac {Q \ cdot x} {A}} \\ & = 10 ^ {8} \ cdot {\ frac {K} {\ eta}} \ cdot \ Delta p \ end {aligned}}}
With
P - power loss in (W = watt )
m
b
a
r
⋅
l
s
=
10
2
P
a
⋅
10
-
3
m
3
s
=
0
,
1
W.
{\ displaystyle \ mathrm {mbar} \ cdot {\ frac {\ mathrm {l}} {\ mathrm {s}}} = 10 ^ {2} \, \ mathrm {Pa} \ cdot 10 ^ {- 3} \ , {\ frac {\ mathrm {m} ^ {3}} {\ mathrm {s}}} = 0 {,} 1 \, \ mathrm {W}}
x - length of the permeation path in cm
A - permeation cross section in cm 2
Δ
p
{\ displaystyle \ Delta p}
- partial pressure difference in bar.
The permeation coefficient is z. B. for
C.
{\ displaystyle C}
Helium through Teflon :
C.
=
523
⋅
10
-
4th
m
2
s
=
523
m
b
a
r
⋅
l
s
⋅
c
m
c
m
2
⋅
b
a
r
{\ displaystyle C = 523 \ cdot 10 ^ {- 4} \, {\ frac {\ mathrm {m} ^ {2}} {\ mathrm {s}}} = 523 \, {\ frac {\ mathrm {mbar } \ cdot {\ tfrac {\ mathrm {l}} {\ mathrm {s}}} \ cdot \ mathrm {cm}} {\ mathrm {cm} ^ {2} \ cdot \ mathrm {bar}}}}
Hydrogen through Teflon:
C.
=
17th
,
8th
⋅
10
-
4th
m
2
s
{\ displaystyle C = 17 {,} 8 \ cdot 10 ^ {- 4} \, {\ frac {\ mathrm {m} ^ {2}} {\ mathrm {s}}}}
Helium by Pyrex glass: .
C.
=
0
,
09
⋅
10
-
4th
m
2
s
{\ displaystyle C = 0 {,} 09 \ cdot 10 ^ {- 4} \, {\ frac {\ mathrm {m} ^ {2}} {\ mathrm {s}}}}
The following results are resolved according to the power loss:
⇔
P
=
10
-
8th
⋅
C.
⋅
A.
⋅
Δ
p
x
.
{\ displaystyle \ Leftrightarrow P = 10 ^ {- 8} \ cdot {\ frac {C \ cdot A \ cdot \ Delta p} {x}}.}
So is z. B. the power loss of helium through a Teflon membrane with a thickness and an area at a pressure difference :
x
=
1
m
m
{\ displaystyle x = 1 \, \ mathrm {mm}}
A.
=
10
c
m
2
{\ displaystyle A = 10 \, \ mathrm {cm} ^ {2}}
Δ
p
=
1
b
a
r
{\ displaystyle \ Delta p = 1 \, \ mathrm {bar}}
P
=
10
-
8th
⋅
523
m
b
a
r
⋅
l
s
⋅
c
m
c
m
2
⋅
b
a
r
⋅
10
c
m
2
⋅
1
b
a
r
1
c
m
=
5
,
23
⋅
10
-
5
m
b
a
r
⋅
l
s
=
5
,
23
μ
W.
{\ displaystyle {\ begin {aligned} P & = 10 ^ {- 8} \ cdot {\ frac {523 \, {\ frac {\ mathrm {mbar} \ cdot {\ tfrac {\ mathrm {l}} {\ mathrm {s}}} \ cdot \ mathrm {cm}} {\ mathrm {cm} ^ {2} \ cdot \ mathrm {bar}}} \ cdot 10 \, \ mathrm {cm} ^ {2} \ cdot 1 \ , \ mathrm {bar}} {1 \, \ mathrm {cm}}} \\ & = 5 {,} 23 \ cdot 10 ^ {- 5} \, \ mathrm {mbar} \ cdot {\ frac {\ mathrm {l}} {\ mathrm {s}}} \\ & = 5 {,} 23 \, \ mu \ mathrm {W} \ end {aligned}}}
literature
Evaluation of gas diffusion through plastic materials used in experimental and sampling equipment. (Wat. Res. 27, No. 1, pp. 121-131, 1993)
Marr, Dr J. William. Leakage Testing Handbook, prepared for Liquid Propulsion. Section. Jet Propulsion Laboratory. National Aeronautics and Space Administration, Pasadena, CA, Contract NAS 7-396, June 1968; LCCN 68061892
Web links
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">