In various sub-areas of mathematics  , images are  called derivatives  if they meet Leibniz's rule  . The concept of derivations is a generalization of the derivation  known from school mathematics .
definition  
Let it be a commutative ring with one  , for example a  body  like or . Besides, be a -  algebra  . A  (  -linear)  derivation  (also  -derivation)  of is a -linear mapping that
  
    
      
        R. 
       
     
    {\ displaystyle R} 
   
 
  
    
      
        
          R. 
         
       
     
    {\ displaystyle \ mathbb {R}} 
   
 
  
    
      
        
          C. 
         
       
     
    {\ displaystyle \ mathbb {C}} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        R. 
       
     
    {\ displaystyle R} 
   
 
  
    
      
        R. 
       
     
    {\ displaystyle R} 
   
   
  
    
      
        R. 
       
     
    {\ displaystyle R} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        R. 
       
     
    {\ displaystyle R} 
   
 
  
    
      
        D. 
        : 
        A. 
        → 
        A. 
       
     
    {\ displaystyle D \ colon A \ to A} 
   
  
  
    
      
        D. 
        ( 
        
          a 
          
            1 
           
         
        
          a 
          
            2 
           
         
        ) 
        = 
        D. 
        ( 
        
          a 
          
            1 
           
         
        ) 
        
          a 
          
            2 
           
         
        + 
        
          a 
          
            1 
           
         
        D. 
        ( 
        
          a 
          
            2 
           
         
        ) 
       
     
    {\ displaystyle D (a_ {1} a_ {2}) = D (a_ {1}) a_ {2} + a_ {1} D (a_ {2})} 
   
   for all 
  
    
      
        
          a 
          
            1 
           
         
        , 
        
          a 
          
            2 
           
         
        ∈ 
        A. 
       
     
    {\ displaystyle a_ {1}, a_ {2} \ in A} 
   
  
  
Fulfills. The -linear property says that for all and the equations
  
    
      
        R. 
       
     
    {\ displaystyle R} 
   
 
  
    
      
        
          a 
          
            1 
           
         
        , 
        
          a 
          
            2 
           
         
        ∈ 
        A. 
       
     
    {\ displaystyle a_ {1}, a_ {2} \ in A} 
   
 
  
    
      
        r 
        ∈ 
        R. 
       
     
    {\ displaystyle r \ in R} 
   
 
  
    
      
        D. 
        ( 
        
          a 
          
            1 
           
         
        + 
        
          a 
          
            2 
           
         
        ) 
        = 
        D. 
        ( 
        
          a 
          
            1 
           
         
        ) 
        + 
        D. 
        ( 
        
          a 
          
            2 
           
         
        ) 
       
     
    {\ displaystyle D (a_ {1} + a_ {2}) = D (a_ {1}) + D (a_ {2})} 
   
  
and
  
    
      
        D. 
        ( 
        r 
        
          a 
          
            1 
           
         
        ) 
        = 
        r 
        D. 
        ( 
        
          a 
          
            1 
           
         
        ) 
       
     
    {\ displaystyle D (ra_ {1}) = rD (a_ {1})} 
   
  
be valid. The definition includes rings by considering them as -algebras. If it is mapped  into a  module  or  bimodule  , the definition can be given analogously.
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        
          Z 
         
       
     
    {\ displaystyle \ mathbb {Z}} 
   
 
  
    
      
        D. 
       
     
    {\ displaystyle D} 
   
  
General properties  
Is an algebra with identity element  , the following applies . This also applies to everyone .
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
   
  
    
      
        
          1 
          
            A. 
           
         
       
     
    {\ displaystyle 1_ {A}} 
   
 
  
    
      
        D. 
        ( 
        
          1 
          
            A. 
           
         
        ) 
        = 
        0 
       
     
    {\ displaystyle D (1_ {A}) = 0} 
   
 
  
    
      
        D. 
        ( 
        r 
        ) 
        = 
        0 
       
     
    {\ displaystyle D (r) = 0} 
   
 
  
    
      
        r 
        ∈ 
        R. 
       
     
    {\ displaystyle r \ in R} 
   
   
The core of  a derivation is a sub-algebra. 
The set of derivations of with values in forms a Lie algebra  with the  commutator  : are and derivations, so too
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        
          D. 
          
            1 
           
         
       
     
    {\ displaystyle D_ {1}} 
   
 
  
    
      
        
          D. 
          
            2 
           
         
       
     
    {\ displaystyle D_ {2}} 
   
   
 
  
    
      
        [ 
        
          D. 
          
            1 
           
         
        , 
        
          D. 
          
            2 
           
         
        ] 
        = 
        
          D. 
          
            1 
           
         
        ∘ 
        
          D. 
          
            2 
           
         
        - 
        
          D. 
          
            2 
           
         
        ∘ 
        
          D. 
          
            1 
           
         
        . 
       
     
    {\ displaystyle [D_ {1}, D_ {2}] = D_ {1} \ circ D_ {2} -D_ {2} \ circ D_ {1}.} 
   
  
For an item is , a derivation. Derivations of this type are called internal derivatives  . The  Hochschild cohomology  is the quotient of the module of the derivatives after the sub-module of the inner derivatives.
  
    
      
        b 
        ∈ 
        A. 
       
     
    {\ displaystyle b \ in A} 
   
 
  
    
      
        
          D. 
          
            b 
           
         
        : 
        A. 
        → 
        A. 
       
     
    {\ displaystyle D_ {b} \ colon A \ to A} 
   
 
  
    
      
        
          D. 
          
            b 
           
         
        ( 
        a 
        ) 
        = 
        b 
        a 
        - 
        a 
        b 
       
     
    {\ displaystyle D_ {b} (a) = ba-ab} 
   
   
  
    
      
        
          H 
          
            1 
           
         
        ( 
        A. 
        , 
        A. 
        ) 
       
     
    {\ displaystyle H ^ {1} (A, A)} 
   
   
In commutative algebra   holds true for all and all non-negative integers .
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        D. 
        ( 
        
          a 
          
            n 
           
         
        ) 
        = 
        n 
        
          a 
          
            n 
            - 
            1 
           
         
        D. 
        ( 
        a 
        ) 
       
     
    {\ displaystyle D (a ^ {n}) = na ^ {n-1} D (a)} 
   
 
  
    
      
        a 
        ∈ 
        A. 
       
     
    {\ displaystyle a \ in A} 
   
 
  
    
      
        n 
       
     
    {\ displaystyle n} 
   
  
 
Examples  
The derivation of  real functions is a derivation. This is what the product rule  says .
  
    
      
        f 
        : 
        D. 
        ⊆ 
        
          R. 
         
        → 
        
          R. 
         
       
     
    {\ displaystyle f \ colon D \ subseteq \ mathbb {R} \ to \ mathbb {R}} 
   
   
For is the formal derivation 
  
    
      
        A. 
        = 
        R. 
        [ 
        X 
        ] 
       
     
    {\ displaystyle A = R [X]} 
   
  
 
 
  
    
      
        ∑ 
        
          a 
          
            i 
           
         
        
          X 
          
            i 
           
         
        ↦ 
        ∑ 
        i 
        
          a 
          
            i 
           
         
        
          X 
          
            i 
            - 
            1 
           
         
       
     
    {\ displaystyle \ sum a_ {i} X ^ {i} \ mapsto \ sum ia_ {i} X ^ {i-1}} 
   
  
a -linear derivation of with values in .
  
    
      
        R. 
       
     
    {\ displaystyle R} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
  
 
Be a manifold. Then the is Cartan deriving  a -linear Derivation of values in the space of  1-forms  on .
  
    
      
        X 
       
     
    {\ displaystyle X} 
   
 
  
    
      
        
          R. 
         
       
     
    {\ displaystyle \ mathbb {R}} 
   
 
  
    
      
        
          C. 
          
            ∞ 
           
         
        ( 
        X 
        ) 
       
     
    {\ displaystyle C ^ {\ infty} (X)} 
   
 
  
    
      
        
          A. 
          
            1 
           
         
        ( 
        X 
        ) 
       
     
    {\ displaystyle A ^ {1} (X)} 
   
 
  
    
      
        X 
       
     
    {\ displaystyle X} 
   
   
One of the reformulations of the Jacobi identity  for Lie algebras  says that the adjoint representation  operates through derivatives: 
 
  
    
      
        [ 
        X 
        , 
        [ 
        A. 
        , 
        B. 
        ] 
        ] 
        = 
        [ 
        [ 
        X 
        , 
        A. 
        ] 
        , 
        B. 
        ] 
        + 
        [ 
        A. 
        , 
        [ 
        X 
        , 
        B. 
        ] 
        ] 
        . 
       
     
    {\ displaystyle [X, [A, B]] = [[X, A], B] + [A, [X, B]].} 
   
  
Derivatives and Kähler differentials 
 
By definition -linear derivatives of a commutative  algebra are classified by the module of  Kähler differentials  , i.e. That is, there is a natural bijection between the -linear derivatives of with values in a module and the -linear mappings . Every derivation arises as a concatenation of the  universal derivation  with a linear mapping .
  
    
      
        R. 
       
     
    {\ displaystyle R} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        
          Ω 
          
            A. 
            
              / 
             
            R. 
           
         
       
     
    {\ displaystyle \ Omega _ {A / R}} 
   
 
  
    
      
        R. 
       
     
    {\ displaystyle R} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        M. 
       
     
    {\ displaystyle M} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        
          Ω 
          
            A. 
            
              / 
             
            R. 
           
         
        → 
        M. 
       
     
    {\ displaystyle \ Omega _ {A / R} \ to M} 
   
 
  
    
      
        D. 
        : 
        A. 
        → 
        M. 
       
     
    {\ displaystyle D \ colon A \ to M} 
   
   
  
    
      
        
          d 
         
        : 
        A. 
        → 
        
          Ω 
          
            A. 
            
              / 
             
            R. 
           
         
       
     
    {\ displaystyle \ mathrm {d} \ colon A \ to \ Omega _ {A / R}} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        
          Ω 
          
            A. 
            
              / 
             
            R. 
           
         
        → 
        M. 
       
     
    {\ displaystyle \ Omega _ {A / R} \ to M} 
   
  
Anti-derivatives  
definition  
If a - or - graduated  -algebra, then a -linear graduated mapping is called an  antiderivation  , if
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        
          Z 
         
       
     
    {\ displaystyle \ mathbb {Z}} 
   
 
  
    
      
        
          Z 
         
        
          / 
         
        2 
        
          Z 
         
       
     
    {\ displaystyle \ mathbb {Z} / 2 \ mathbb {Z}} 
   
   
  
    
      
        R. 
       
     
    {\ displaystyle R} 
   
 
  
    
      
        R. 
       
     
    {\ displaystyle R} 
   
 
  
    
      
        D. 
        : 
        A. 
        → 
        A. 
       
     
    {\ displaystyle D \ colon A \ to A} 
   
  
  
    
      
        D. 
        ( 
        
          a 
          
            1 
           
         
        
          a 
          
            2 
           
         
        ) 
        = 
        D. 
        ( 
        
          a 
          
            1 
           
         
        ) 
        
          a 
          
            2 
           
         
        + 
        ( 
        - 
        1 
        
          ) 
          
            
              | 
             
            
              a 
              
                1 
               
             
            
              | 
             
           
         
        ⋅ 
        
          a 
          
            1 
           
         
        D. 
        ( 
        
          a 
          
            2 
           
         
        ) 
       
     
    {\ displaystyle D (a_ {1} a_ {2}) = D (a_ {1}) a_ {2} + (- 1) ^ {| a_ {1} |} \ cdot a_ {1} D (a_ { 2})} 
   
  
holds for all homogeneous elements ; where denotes the degree of .
  
    
      
        
          a 
          
            1 
           
         
        , 
        
          a 
          
            2 
           
         
        ∈ 
        A. 
       
     
    {\ displaystyle a_ {1}, a_ {2} \ in A} 
   
 
  
    
      
        
          | 
         
        
          a 
          
            1 
           
         
        
          | 
         
       
     
    {\ displaystyle | a_ {1} |} 
   
 
  
    
      
        
          a 
          
            1 
           
         
       
     
    {\ displaystyle a_ {1}} 
   
 
Examples  
  
    
      
        
          d 
         
        ( 
        ω 
        ∧ 
        η 
        ) 
        = 
        
          d 
         
        ω 
        ∧ 
        η 
        + 
        ( 
        - 
        1 
        
          ) 
          
            
              | 
             
            ω 
            
              | 
             
           
         
        ⋅ 
        ω 
        ∧ 
        
          d 
         
        η 
        . 
       
     
    {\ displaystyle \ mathrm {d} (\ omega \ wedge \ eta) = \ mathrm {d} \ omega \ wedge \ eta + (- 1) ^ {| \ omega |} \ cdot \ omega \ wedge \ mathrm {d } \ eta.} 
   
  
literature  
 
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">