The term direct sum of  Abelian groups generalizes the concept of the direct sum of vector spaces  . It is of great importance for the theory of Abelian groups  . If a group can be broken down into a direct sum, the structure of the group is reduced to simpler groups. New groups can be formed from the direct summands. Most structure theorems make a statement about a direct decomposition of groups.
Definitions The Abelian group is said to be a direct sum  of two subgroups , if the following two conditions are met.
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        
          A. 
          
            1 
           
         
       
     
    {\ displaystyle A_ {1}} 
   
 
  
    
      
        
          A. 
          
            2 
           
         
       
     
    {\ displaystyle A_ {2}} 
   
   
  
    
      
        
          A. 
          
            1 
           
         
        + 
        
          A. 
          
            2 
           
         
        = 
        A. 
       
     
    {\ displaystyle A_ {1} + A_ {2} = A} 
   
  
  
    
      
        
          A. 
          
            1 
           
         
        ∩ 
        
          A. 
          
            2 
           
         
        = 
        0 
       
     
    {\ displaystyle A_ {1} \ cap A_ {2} = 0} 
   
  
 
In this case it is written . Here referred to the subgroup that only the identity element contains.
  
    
      
        A. 
        = 
        
          A. 
          
            1 
           
         
        ⊕ 
        
          A. 
          
            2 
           
         
       
     
    {\ displaystyle A = A_ {1} \ oplus A_ {2}} 
   
 
  
    
      
        0 
       
     
    {\ displaystyle 0} 
   
 
  
    
      
        0 
       
     
    {\ displaystyle 0} 
   
  
A subgroup   is a direct summand  if there is a subgroup are with: . In this case the  complement  of .
  
    
      
        
          A. 
          
            1 
           
         
        ↪ 
        A. 
       
     
    {\ displaystyle A_ {1} \ hookrightarrow A} 
   
 
  
    
      
        
          A. 
          
            2 
           
         
       
     
    {\ displaystyle A_ {2}} 
   
 
  
    
      
        A. 
        = 
        
          A. 
          
            1 
           
         
        ⊕ 
        
          A. 
          
            2 
           
         
       
     
    {\ displaystyle A = A_ {1} \ oplus A_ {2}} 
   
 
  
    
      
        
          A. 
          
            2 
           
         
       
     
    {\ displaystyle A_ {2}} 
   
 
  
    
      
        
          A. 
          
            1 
           
         
       
     
    {\ displaystyle A_ {1}} 
   
   
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        0 
       
     
    {\ displaystyle 0} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
  
Be a family of subgroups of . The group is called the direct sum  of when the following conditions are met.
  
    
      
        ( 
        
          A. 
          
            i 
           
         
        
          | 
         
        i 
        ∈ 
        I. 
        ) 
       
     
    {\ displaystyle (A_ {i} | i \ in I)} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        ( 
        
          A. 
          
            i 
           
         
        
          | 
         
        i 
        ∈ 
        I. 
        ) 
       
     
    {\ displaystyle (A_ {i} | i \ in I)} 
   
   
 
  
    
      
        
          ∑ 
          
            i 
            ∈ 
            I. 
           
         
        
          A. 
          
            i 
           
         
        = 
        A. 
       
     
    {\ displaystyle \ sum _ {i \ in I} A_ {i} = A} 
   
 
  
    
      
        ( 
        
          A. 
          
            i 
           
         
        
          | 
         
        i 
        ∈ 
        I. 
        ) 
       
     
    {\ displaystyle (A_ {i} | i \ in I)} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
  
For each applies: .
  
    
      
        i 
        ∈ 
        I. 
       
     
    {\ displaystyle i \ in I} 
   
 
  
    
      
        
          A. 
          
            i 
           
         
        ∩ 
        
          ∑ 
          
            j 
            ≠ 
            i 
           
         
        
          A. 
          
            j 
           
         
        = 
        0 
       
     
    {\ displaystyle A_ {i} \ cap \ sum _ {j \ neq i} A_ {j} = 0} 
   
  
 
It is written: . Or if .
  
    
      
        A. 
        = 
        
          ⨁ 
          
            i 
            ∈ 
            I. 
           
         
        
          A. 
          
            i 
           
         
       
     
    {\ displaystyle A = \ bigoplus \ limits _ {i \ in I} A_ {i}} 
   
 
  
    
      
        A. 
        = 
        
          A. 
          
            1 
           
         
        ⊕ 
        ⋯ 
        ⊕ 
        
          A. 
          
            n 
           
         
       
     
    {\ displaystyle A = A_ {1} \ oplus \ dots \ oplus A_ {n}} 
   
 
  
    
      
        I. 
        = 
        { 
        1 
        , 
        ... 
        , 
        n 
        } 
       
     
    {\ displaystyle I = \ {1, \ dots, n \}} 
   
  
Explanations, simple sentences 
 
They are subgroups of the Abelian group . Then the following statements are equivalent:
  
    
      
        B. 
        , 
        C. 
       
     
    {\ displaystyle B, C} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
It is .
  
    
      
        A. 
        = 
        B. 
        ⊕ 
        C. 
       
     
    {\ displaystyle A = B \ oplus C} 
   
  
Each can be clearly written as with .
  
    
      
        a 
        ∈ 
        A. 
       
     
    {\ displaystyle a \ in A} 
   
 
  
    
      
        a 
        = 
        b 
        + 
        c 
       
     
    {\ displaystyle a = b + c} 
   
 
  
    
      
        b 
        ∈ 
        B. 
        , 
        c 
        ∈ 
        C. 
       
     
    {\ displaystyle b \ in B, c \ in C} 
   
  
It is and follows from with .
  
    
      
        A. 
        = 
        B. 
        + 
        C. 
       
     
    {\ displaystyle A = B + C} 
   
 
  
    
      
        0 
        = 
        b 
        + 
        c 
       
     
    {\ displaystyle 0 = b + c} 
   
 
  
    
      
        b 
        ∈ 
        B. 
        , 
        c 
        ∈ 
        C. 
       
     
    {\ displaystyle b \ in B, c \ in C} 
   
 
  
    
      
        b 
        = 
        0 
        = 
        c 
       
     
    {\ displaystyle b = 0 = c} 
   
  
 
 
If , then the two endomorphisms  and have the following property: and . It is the identity .
  
    
      
        A. 
        = 
        B. 
        ⊕ 
        C. 
       
     
    {\ displaystyle A = B \ oplus C} 
   
 
  
    
      
        
          π 
          
            B. 
           
         
        : 
        A. 
        ∋ 
        b 
        + 
        c 
        ↦ 
        b 
        ∈ 
        A. 
       
     
    {\ displaystyle \ pi _ {B} \ colon A \ ni b + c \ mapsto b \ in A} 
   
 
  
    
      
        
          π 
          
            C. 
           
         
        : 
        a 
        ∋ 
        b 
        + 
        c 
        ↦ 
        c 
        ∈ 
        A. 
       
     
    {\ displaystyle \ pi _ {C} \ colon a \ ni b + c \ mapsto c \ in A} 
   
 
  
    
      
        
          π 
          
            B. 
           
          
            2 
           
         
        = 
        
          π 
          
            B. 
           
         
        , 
        
          π 
          
            C. 
           
          
            2 
           
         
        = 
        
          π 
          
            C. 
           
         
        , 
        
          π 
          
            C. 
           
         
        
          π 
          
            B. 
           
         
        = 
        
          π 
          
            B. 
           
         
        
          π 
          
            C. 
           
         
        = 
        0 
       
     
    {\ displaystyle \ pi _ {B} ^ {2} = \ pi _ {B}, \ pi _ {C} ^ {2} = \ pi _ {C}, \ pi _ {C} \ pi _ {B } = \ pi _ {B} \ pi _ {C} = 0} 
   
 
  
    
      
        
          1 
          
            A. 
           
         
        = 
        
          π 
          
            B. 
           
         
        + 
        
          π 
          
            C. 
           
         
       
     
    {\ displaystyle 1_ {A} = \ pi _ {B} + \ pi _ {C}} 
   
 
  
    
      
        
          1 
          
            A. 
           
         
       
     
    {\ displaystyle 1_ {A}} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
   
 
Homomorphisms  provide a way of identifying and recognizing direct summands:
Be homomorphisms. Then:
  
    
      
        A. 
        
          
            ⟶ 
            f 
           
         
        B. 
        
          
            ⟶ 
            G 
           
         
        C. 
       
     
    {\ displaystyle A {\ overset {f} {\ longrightarrow}} B {\ overset {g} {\ longrightarrow}} C} 
   
  
  
    
      
        G 
        f 
       
     
    {\ displaystyle gf} 
   
 monomorphism   and is a monomorphism.
  
    
      
        ⟺ 
        image 
         
        ( 
        f 
        ) 
        ∩ 
        core 
         
        ( 
        G 
        ) 
        = 
        0 
       
     
    {\ displaystyle \ iff \ operatorname {image} (f) \ cap \ operatorname {core} (g) = 0} 
   
 
  
    
      
        f 
       
     
    {\ displaystyle f} 
   
  
If there is   an epimorphism  , then is .
  
    
      
        G 
        f 
       
     
    {\ displaystyle gf} 
   
 
  
    
      
        image 
         
        ( 
        f 
        ) 
        + 
        core 
         
        ( 
        G 
        ) 
        = 
        B. 
       
     
    {\ displaystyle \ operatorname {image} (f) + \ operatorname {core} (g) = B} 
   
   
If there is an isomorphism  , then is .
  
    
      
        G 
        f 
       
     
    {\ displaystyle gf} 
   
 
  
    
      
        image 
         
        ( 
        f 
        ) 
        ⊕ 
        core 
         
        ( 
        G 
        ) 
        = 
        B. 
       
     
    {\ displaystyle \ operatorname {image} (f) \ oplus \ operatorname {core} (g) = B} 
   
   
 
The following statements are equivalent for a subgroup :
  
    
      
        B. 
        ↪ 
        A. 
       
     
    {\ displaystyle B \ hookrightarrow A} 
   
  
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
  
There is an endomorphism with: and .
  
    
      
        π 
        : 
        A. 
        → 
        A. 
       
     
    {\ displaystyle \ pi \ colon A \ to A} 
   
 
  
    
      
        
          π 
          
            2 
           
         
        = 
        π 
       
     
    {\ displaystyle \ pi ^ {2} = \ pi} 
   
 
  
    
      
        π 
        ( 
        A. 
        ) 
        = 
        B. 
       
     
    {\ displaystyle \ pi (A) = B} 
   
  
If the inclusion map is, there is a homomorphism with .
  
    
      
        ι 
        : 
        B. 
        → 
        A. 
       
     
    {\ displaystyle \ iota \ colon B \ to A} 
   
 
  
    
      
        π 
        : 
        A. 
        → 
        B. 
       
     
    {\ displaystyle \ pi \ colon A \ to B} 
   
 
  
    
      
        π 
        ι 
        = 
        
          1 
          
            B. 
           
         
       
     
    {\ displaystyle \ pi \ iota = 1_ {B}} 
   
  
 
Examples 
  
    
      
        0 
       
     
    {\ displaystyle 0} 
   
  
Let it be the cyclic group    with the associated addition. Be it . Then is . There are and subsets of . Their average is and their sum is . It is for example .
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        A. 
        = 
        
          Z 
         
        
          / 
         
        6th 
        
          Z 
         
        = 
        { 
        0 
        , 
        1 
        , 
        2 
        , 
        3 
        , 
        4th 
        , 
        5 
        } 
       
     
    {\ displaystyle A = \ mathbb {Z} / 6 \ mathbb {Z} = \ {0,1,2,3,4,5 \}} 
   
 
  
    
      
        U 
        = 
        { 
        0 
        , 
        3 
        } 
        , 
        V 
        = 
        { 
        0 
        , 
        2 
        , 
        4th 
        } 
       
     
    {\ displaystyle U = \ {0.3 \}, V = \ {0.2.4 \}} 
   
 
  
    
      
        A. 
        = 
        U 
        ⊕ 
        V 
       
     
    {\ displaystyle A = U \ oplus V} 
   
 
  
    
      
        U 
       
     
    {\ displaystyle U} 
   
 
  
    
      
        V 
       
     
    {\ displaystyle V} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        0 
       
     
    {\ displaystyle 0} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        3 
        + 
        4th 
        = 
        1 
        
          mod 
          
            6th 
           
         
       
     
    {\ displaystyle 3 + 4 = 1 {\ bmod {6}}} 
   
   
The groups of whole numbers   and rational numbers  are indecomposable. If a  prime number  , it is   directly indecomposable.
  
    
      
        
          Z 
         
       
     
    {\ displaystyle \ mathbb {Z}} 
   
 
  
    
      
        
          Q 
         
       
     
    {\ displaystyle \ mathbb {Q}} 
   
 
  
    
      
        p 
       
     
    {\ displaystyle p} 
   
 
  
    
      
        
          Z 
         
        
          / 
         
        p 
        
          Z 
         
       
     
    {\ displaystyle \ mathbb {Z} / p \ mathbb {Z}} 
   
   
If the Abelian group has a largest subgroup , then it is directly indivisible. If a prime number, then has the largest subgroup . So it cannot be decomposed directly.
  
    
      
        ≠ 
        A. 
       
     
    {\ displaystyle \ neq A} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        p 
       
     
    {\ displaystyle p} 
   
 
  
    
      
        A. 
        = 
        
          Z 
         
        
          / 
         
        
          p 
          
            n 
           
         
        
          Z 
         
       
     
    {\ displaystyle A = \ mathbb {Z} / p ^ {n} \ mathbb {Z}} 
   
 
  
    
      
        p 
        
          Z 
         
        
          / 
         
        
          p 
          
            n 
           
         
        
          Z 
         
        ≠ 
        A. 
       
     
    {\ displaystyle p \ mathbb {Z} / p ^ {n} \ mathbb {Z} \ neq A} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
  
Are coprime  integers, then is .
  
    
      
        a 
        , 
        b 
       
     
    {\ displaystyle a, b} 
   
 
  
    
      
        
          Z 
         
        
          / 
         
        ( 
        a 
        ⋅ 
        b 
        ) 
        
          Z 
         
        = 
        a 
        
          Z 
         
        
          / 
         
        ( 
        a 
        ⋅ 
        b 
        ) 
        
          Z 
         
        ⊕ 
        b 
        
          Z 
         
        
          / 
         
        ( 
        a 
        ⋅ 
        b 
        ) 
        
          Z 
         
       
     
    {\ displaystyle \ mathbb {Z} / (a \ cdot b) \ mathbb {Z} = a \ mathbb {Z} / (a \ cdot b) \ mathbb {Z} \ oplus b \ mathbb {Z} / (a \ cdot b) \ mathbb {Z}} 
   
   
The last example has a strong generalization: be a group and be with . In addition, be coprime with . Then is .
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        n 
        ∈ 
        
          N 
         
       
     
    {\ displaystyle n \ in \ mathbb {N}} 
   
 
  
    
      
        A. 
        ⋅ 
        n 
        = 
        0 
       
     
    {\ displaystyle A \ cdot n = 0} 
   
 
  
    
      
        n 
        = 
        r 
        ⋅ 
        s 
       
     
    {\ displaystyle n = r \ cdot s} 
   
 
  
    
      
        r 
        , 
        s 
       
     
    {\ displaystyle r, s} 
   
 
  
    
      
        A. 
        = 
        A. 
        ⋅ 
        r 
        ⊕ 
        A. 
        ⋅ 
        s 
       
     
    {\ displaystyle A = A \ cdot r \ oplus A \ cdot s} 
   
  
Is , so is , where is. The complement of is by no means clearly determined. For example, it is also for everyone .
  
    
      
        
          
            Z 
           
          
            2 
           
         
        = 
        { 
        ( 
        
          z 
          
            1 
           
         
        , 
        
          z 
          
            2 
           
         
        ) 
        
          | 
         
        
          z 
          
            1 
           
         
        , 
        
          z 
          
            2 
           
         
        ∈ 
        
          Z 
         
        } 
       
     
    {\ displaystyle \ mathbb {Z} ^ {2} = \ {(z_ {1}, z_ {2}) | z_ {1}, z_ {2} \ in \ mathbb {Z} \}} 
   
 
  
    
      
        
          
            Z 
           
          
            2 
           
         
        = 
        
          
            
              
                e 
                
                  1 
                 
               
              → 
             
           
         
        
          Z 
         
        ⊕ 
        
          
            
              
                e 
                
                  2 
                 
               
              → 
             
           
         
        
          Z 
         
       
     
    {\ displaystyle \ mathbb {Z} ^ {2} = {\ vec {e_ {1}}} \ mathbb {Z} \ oplus {\ vec {e_ {2}}} \ mathbb {Z}} 
   
 
  
    
      
        
          
            
              
                e 
                
                  1 
                 
               
              → 
             
           
         
        = 
        ( 
        1 
        , 
        0 
        ) 
        , 
        
          
            
              
                e 
                
                  2 
                 
               
              → 
             
           
         
        = 
        ( 
        0 
        , 
        1 
        ) 
       
     
    {\ displaystyle {\ vec {e_ {1}}} = (1.0), {\ vec {e_ {2}}} = (0.1)} 
   
 
  
    
      
        
          
            
              
                e 
                
                  1 
                 
               
              → 
             
           
         
        
          Z 
         
       
     
    {\ displaystyle {\ vec {e_ {1}}} \ mathbb {Z}} 
   
 
  
    
      
        
          
            Z 
           
          
            2 
           
         
        = 
        
          
            
              
                e 
                
                  1 
                 
               
              → 
             
           
         
        
          Z 
         
        ⊕ 
        ( 
        z 
        , 
        1 
        ) 
        
          Z 
         
       
     
    {\ displaystyle \ mathbb {Z} ^ {2} = {\ vec {e_ {1}}} \ mathbb {Z} \ oplus (z, 1) \ mathbb {Z}} 
   
 
  
    
      
        z 
        ∈ 
        
          Z 
         
       
     
    {\ displaystyle z \ in \ mathbb {Z}} 
   
  
The last example is more general. Be a natural number. the set of - tuples with components . Next is the tuple that has one here and in other places . Then is .
  
    
      
        n 
        ≥ 
        1 
       
     
    {\ displaystyle n \ geq 1} 
   
 
  
    
      
        
          
            Z 
           
          
            n 
           
         
        : = 
        { 
        ( 
        
          z 
          
            1 
           
         
        , 
        ... 
        , 
        
          z 
          
            n 
           
         
        ) 
        
          | 
         
        
          z 
          
            i 
           
         
        ∈ 
        
          Z 
         
        } 
       
     
    {\ displaystyle \ mathbb {Z} ^ {n}: = \ {(z_ {1}, \ dots, z_ {n}) | z_ {i} \ in \ mathbb {Z} \}} 
   
 
  
    
      
        n 
       
     
    {\ displaystyle n} 
   
 
  
    
      
        
          Z 
         
       
     
    {\ displaystyle \ mathbb {Z}} 
   
 
  
    
      
        
          
            
              
                e 
                
                  i 
                 
               
              → 
             
           
         
       
     
    {\ displaystyle {\ vec {e_ {i}}}} 
   
 
  
    
      
        i 
       
     
    {\ displaystyle i} 
   
 
  
    
      
        1 
       
     
    {\ displaystyle 1} 
   
 
  
    
      
        0 
       
     
    {\ displaystyle 0} 
   
 
  
    
      
        
          
            Z 
           
          
            n 
           
         
        = 
        
          ⨁ 
          
            i 
            = 
            1 
           
          
            n 
           
         
        
          
            
              
                e 
                → 
               
             
           
          
            i 
           
         
        
          Z 
         
       
     
    {\ displaystyle \ mathbb {Z} ^ {n} = \ bigoplus \ limits _ {i = 1} ^ {n} {\ vec {e}} _ {i} \ mathbb {Z}} 
   
  
To determine whether a subgroup is a direct summand, there is a simple criterion:
  
    
      
        
          
            Z 
           
          
            2 
           
         
       
     
    {\ displaystyle \ mathbb {Z} ^ {2}} 
   
  
 
Be . Then the following statements are equivalent.
  
    
      
        
          
            
              a 
              → 
             
           
         
        = 
        ( 
        
          a 
          
            1 
           
         
        , 
        
          a 
          
            2 
           
         
        ) 
        ∈ 
        
          
            Z 
           
          
            2 
           
         
       
     
    {\ displaystyle {\ vec {a}} = (a_ {1}, a_ {2}) \ in \ mathbb {Z} ^ {2}} 
   
  
  
    
      
        
          
            
              a 
              → 
             
           
         
        
          Z 
         
       
     
    {\ displaystyle {\ vec {a}} \ mathbb {Z}} 
   
 
  
    
      
        
          
            Z 
           
          
            2 
           
         
       
     
    {\ displaystyle \ mathbb {Z} ^ {2}} 
   
  
There is with .
  
    
      
        
          b 
          
            1 
           
         
        , 
        
          b 
          
            2 
           
         
        ∈ 
        
          Z 
         
       
     
    {\ displaystyle b_ {1}, b_ {2} \ in \ mathbb {Z}} 
   
 
  
    
      
        
          a 
          
            1 
           
         
        ⋅ 
        
          b 
          
            1 
           
         
        + 
        
          a 
          
            2 
           
         
        ⋅ 
        
          b 
          
            2 
           
         
        = 
        1 
       
     
    {\ displaystyle a_ {1} \ cdot b_ {1} + a_ {2} \ cdot b_ {2} = 1} 
   
  
 
	Some grids and determinants as area 
		
			
			
A grid with the generating vectors 
  
    
      
        ( 
        1 
        , 
        0 
        ) 
        
          Z 
         
        , 
        ( 
        0 
        , 
        1 
        ) 
        
          Z 
         
       
     
    {\ displaystyle (1,0) \ mathbb {Z}, (0,1) \ mathbb {Z}} 
   
 
			 
		 
			
			
A grid with the generating vectors is shown
  
    
      
        ( 
        1 
        , 
        1 
        ) 
        
          Z 
         
        , 
        ( 
        - 
        2 
        , 
        - 
        1 
        ) 
        
          Z 
         
       
     
    {\ displaystyle (1,1) \ mathbb {Z}, (- 2, -1) \ mathbb {Z}} 
   
 
			 
		  
Property 2. of the last sentence has a geometric meaning: The subgroup is a direct summand in if and only if there is a vector such that a parallelogram  of area 1 spans.
  
    
      
        
          
            
              a 
              → 
             
           
         
        
          Z 
         
       
     
    {\ displaystyle {\ vec {a}} \ mathbb {Z}} 
   
 
  
    
      
        
          
            Z 
           
          
            2 
           
         
       
     
    {\ displaystyle \ mathbb {Z} ^ {2}} 
   
 
  
    
      
        
          
            
              b 
              → 
             
           
         
        = 
        ( 
        
          b 
          
            1 
           
         
        , 
        
          b 
          
            2 
           
         
        ) 
       
     
    {\ displaystyle {\ vec {b}} = (b_ {1}, b_ {2})} 
   
 
  
    
      
        
          
            
              a 
              → 
             
           
         
        , 
        
          
            
              b 
              → 
             
           
         
       
     
    {\ displaystyle {\ vec {a}}, {\ vec {b}}} 
   
  
The last statement can be generalized. If so the following applies:   is a direct summand in if and only if the numbers have   the greatest common factor .
  
    
      
        
          
            
              a 
              → 
             
           
         
        = 
        ( 
        
          a 
          
            1 
           
         
        , 
        ... 
        , 
        
          a 
          
            n 
           
         
        ) 
        ∈ 
        
          
            Z 
           
          
            n 
           
         
       
     
    {\ displaystyle {\ vec {a}} = (a_ {1}, \ dots, a_ {n}) \ in \ mathbb {Z} ^ {n}} 
   
 
  
    
      
        
          
            
              a 
              → 
             
           
         
        
          Z 
         
       
     
    {\ displaystyle {\ vec {a}} \ mathbb {Z}} 
   
 
  
    
      
        
          
            Z 
           
          
            n 
           
         
       
     
    {\ displaystyle \ mathbb {Z} ^ {n}} 
   
 
  
    
      
        
          a 
          
            1 
           
         
        , 
        ... 
        , 
        
          a 
          
            n 
           
         
       
     
    {\ displaystyle a_ {1}, \ dots, a_ {n}} 
   
 
  
    
      
        1 
       
     
    {\ displaystyle 1} 
   
  
Primary groups 
 
The following theorem makes a statement about the decomposition of torsion groups. For this purpose it is defined: Let be   a prime number. The group is called -primarily if and only if everyone has a with . The sum of all -primary subgroups of a group is -primary. It is the largest primary subgroup of . It is 
denoted by and is called the primary component of . The following applies:
  
    
      
        p 
       
     
    {\ displaystyle p} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        p 
       
     
    {\ displaystyle p} 
   
 
  
    
      
        a 
        ∈ 
        A. 
       
     
    {\ displaystyle a \ in A} 
   
 
  
    
      
        n 
        ∈ 
        
          N 
         
       
     
    {\ displaystyle n \ in \ mathbb {N}} 
   
 
  
    
      
        a 
        ⋅ 
        
          p 
          
            n 
           
         
        = 
        0 
       
     
    {\ displaystyle a \ cdot p ^ {n} = 0} 
   
 
  
    
      
        p 
       
     
    {\ displaystyle p} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        p 
       
     
    {\ displaystyle p} 
   
 
  
    
      
        p 
       
     
    {\ displaystyle p} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        
          A. 
          
            p 
           
         
       
     
    {\ displaystyle A_ {p}} 
   
 
  
    
      
        p 
       
     
    {\ displaystyle p} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
If a torsion group is, then is . It is the direct sum of its primary components.
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        A. 
        = 
        
          ⨁ 
          
            p 
            
               prim 
             
           
         
        
          A. 
          
            p 
           
         
       
     
    {\ displaystyle A = \ bigoplus \ limits _ {p {\ text {prim}}} A_ {p}} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
  Universal property Be for two subgroups and the canonical inclusions. They are equivalent:
  
    
      
        A. 
        = 
        
          A. 
          
            1 
           
         
        + 
        
          A. 
          
            2 
           
         
       
     
    {\ displaystyle A = A_ {1} + A_ {2}} 
   
 
  
    
      
        
          A. 
          
            1 
           
         
        , 
        
          A. 
          
            2 
           
         
       
     
    {\ displaystyle A_ {1}, A_ {2}} 
   
 
  
    
      
        
          q 
          
            i 
           
         
        : 
        
          A. 
          
            i 
           
         
        ↪ 
        A. 
       
     
    {\ displaystyle q_ {i} \ colon A_ {i} \ hookrightarrow A} 
   
  
  
    
      
        A. 
        = 
        
          A. 
          
            1 
           
         
        ⊕ 
        
          A. 
          
            2 
           
         
       
     
    {\ displaystyle A = A_ {1} \ oplus A_ {2}} 
   
  
For every two homomorphisms there is exactly one homomorphism with for .
  
    
      
        
          f 
          
            i 
           
         
        : 
        
          A. 
          
            i 
           
         
        → 
        B. 
        , 
        i 
        ∈ 
        { 
        1 
        , 
        2 
        } 
       
     
    {\ displaystyle f_ {i} \ colon A_ {i} \ to B, i \ in \ {1,2 \}} 
   
 
  
    
      
        f 
        : 
        A. 
        → 
        B. 
       
     
    {\ displaystyle f \ colon A \ to B} 
   
 
  
    
      
        f 
        ∘ 
        
          q 
          
            i 
           
         
        = 
        
          f 
          
            i 
           
         
       
     
    {\ displaystyle f \ circ q_ {i} = f_ {i}} 
   
 
  
    
      
        i 
        ∈ 
        { 
        1 
        , 
        2 
        } 
       
     
    {\ displaystyle i \ in \ {1,2 \}} 
   
  
 
The second statement of the theorem is the so-called universal property of the direct sum. It applies to any index set.
Be   a family of subgroups with . And be the inclusions. Then are equivalent:
  
    
      
        ( 
        
          A. 
          
            i 
           
         
        
          | 
         
        i 
        ∈ 
        I. 
        ) 
       
     
    {\ displaystyle (A_ {i} | i \ in I)} 
   
 
  
    
      
        
          ∑ 
          
            i 
            ∈ 
            I. 
           
         
        
          A. 
          
            i 
           
         
        = 
        A. 
       
     
    {\ displaystyle \ sum \ limits _ {i \ in I} A_ {i} = A} 
   
 
  
    
      
        
          q 
          
            i 
           
         
        : 
        
          A. 
          
            i 
           
         
        ↪ 
        A. 
       
     
    {\ displaystyle q_ {i} \ colon A_ {i} \ hookrightarrow A} 
   
  
It is .
  
    
      
        
          ⨁ 
          
            i 
            ∈ 
            I. 
           
         
        
          A. 
          
            i 
           
         
        = 
        A. 
       
     
    {\ displaystyle \ bigoplus \ limits _ {i \ in I} A_ {i} = A} 
   
  
For each family of homomorphisms there is exactly one with . That means, the following diagram is commutative for all .
  
    
      
        
          f 
          
            i 
           
         
        : 
        
          A. 
          
            i 
           
         
        → 
        B. 
       
     
    {\ displaystyle f_ {i} \ colon A_ {i} \ to B} 
   
 
  
    
      
        f 
        : 
        A. 
        → 
        B. 
       
     
    {\ displaystyle f \ colon A \ to B} 
   
 
  
    
      
        f 
        ∘ 
        
          q 
          
            i 
           
         
        = 
        
          f 
          
            i 
           
         
       
     
    {\ displaystyle f \ circ q_ {i} = f_ {i}} 
   
 
  
    
      
        i 
        ∈ 
        I. 
       
     
    {\ displaystyle i \ in I} 
   
  
 
Let   and be two abelian groups with and . If there is exactly one with and exactly one with for every family , then and are isomorphic.
  
    
      
        ( 
        A. 
        , 
        
          q 
          
            i 
           
         
        ) 
       
     
    {\ displaystyle (A, q_ {i})} 
   
 
  
    
      
        ( 
        S. 
        , 
        
          s 
          
            i 
           
         
        ) 
       
     
    {\ displaystyle (S, s_ {i})} 
   
 
  
    
      
        
          q 
          
            i 
           
         
        : 
        
          A. 
          
            i 
           
         
        → 
        A. 
       
     
    {\ displaystyle q_ {i} \ colon A_ {i} \ to A} 
   
 
  
    
      
        
          s 
          
            i 
           
         
        : 
        
          A. 
          
            i 
           
         
        → 
        S. 
       
     
    {\ displaystyle s_ {i} \ colon A_ {i} \ to S} 
   
 
  
    
      
        
          f 
          
            i 
           
         
        : 
        
          A. 
          
            i 
           
         
        → 
        B. 
       
     
    {\ displaystyle f_ {i} \ colon A_ {i} \ to B} 
   
 
  
    
      
        f 
        : 
        A. 
        → 
        B. 
       
     
    {\ displaystyle f \ colon A \ to B} 
   
 
  
    
      
        
          f 
          
            i 
           
         
        = 
        f 
        ∘ 
        
          q 
          
            i 
           
         
       
     
    {\ displaystyle f_ {i} = f \ circ q_ {i}} 
   
 
  
    
      
        G 
        : 
        S. 
        → 
        B. 
       
     
    {\ displaystyle g \ colon S \ to B} 
   
 
  
    
      
        
          f 
          
            i 
           
         
        = 
        G 
        ∘ 
        
          s 
          
            i 
           
         
       
     
    {\ displaystyle f_ {i} = g \ circ s_ {i}} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        S. 
       
     
    {\ displaystyle S} 
   
  
Some structure sentences 
 
Theorem: If there is a homomorphism, then with and .
  
    
      
        f 
        : 
        A. 
        → 
        
          Z 
         
       
     
    {\ displaystyle f \ colon A \ to \ mathbb {Z}} 
   
 
  
    
      
        A. 
        = 
        core 
         
        ( 
        f 
        ) 
        ⊕ 
        a 
        
          Z 
         
       
     
    {\ displaystyle A = \ operatorname {core} (f) \ oplus a \ mathbb {Z}} 
   
 
  
    
      
        a 
        ∈ 
        A. 
       
     
    {\ displaystyle a \ in A} 
   
 
  
    
      
        a 
        ⋅ 
        
          Z 
         
        ≅ 
        
          Z 
         
       
     
    {\ displaystyle a \ cdot \ mathbb {Z} \ cong \ mathbb {Z}} 
   
  
Theorem: Each subgroup of is the direct sum of at most cyclic subgroups.
  
    
      
        
          
            Z 
           
          
            n 
           
         
       
     
    {\ displaystyle \ mathbb {Z} ^ {n}} 
   
 
  
    
      
        n 
       
     
    {\ displaystyle n} 
   
  
Theorem: If it is   torsion-free and generated by elements, then there is a monomorphism .
  
    
      
        F. 
       
     
    {\ displaystyle F} 
   
 
  
    
      
        n 
       
     
    {\ displaystyle n} 
   
 
  
    
      
        F. 
        → 
        
          
            Z 
           
          
            n 
           
         
       
     
    {\ displaystyle F \ to \ mathbb {Z} ^ {n}} 
   
  
Conclusion: If   there is a torsion-free group generated   by elements, then there is a such that is isomorphic to .
  
    
      
        F. 
       
     
    {\ displaystyle F} 
   
 
  
    
      
        n 
       
     
    {\ displaystyle n} 
   
 
  
    
      
        k 
        ≤ 
        n 
       
     
    {\ displaystyle k \ leq n} 
   
 
  
    
      
        F. 
       
     
    {\ displaystyle F} 
   
 
  
    
      
        
          
            Z 
           
          
            k 
           
         
       
     
    {\ displaystyle \ mathbb {Z} ^ {k}} 
   
  
If finitely generated, the torsion subgroup is a direct summand of .
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
  
 
Individual evidence 
^  László Fuchs: Abelian Groups.  Springer, 2015, ISBN 978-3-319-19421-9  , p. 43. 
 
^  Frank W. Anderson, Kent R. Fuller: Rings and Categories of Modules.  Springer, 1992, ISBN 0-387-97845-3  , p. 66. 
 
 
literature Web links Since it is quite tedious to look for the evidence to the facts in the given literature together, evidence is  compiled here .  
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">