A field strength tensor describes the fields in gauge theories . The best-known example is the electromagnetic field strength tensor for the calibration theory of electrodynamics , which describes the electric and magnetic field . Field strength tensors are mainly used in quantum field theories .
The field strength tensor is not a tensor in the actual mathematical sense, since its components are not real numbers , but elements of the Lie algebra belonging to the calibration group .
General
If the covariant derivative of a field is defined in a gauge theory as
ψ
{\ displaystyle \ psi}
D.
μ
ψ
=
(
∂
μ
+
A.
μ
)
ψ
{\ displaystyle D _ {\ mu} \ psi = (\ partial _ {\ mu} + A _ {\ mu}) \ psi}
,
in which
A.
μ
{\ displaystyle A _ {\ mu}}
a matrix potential of the form is with
A.
μ
=
-
i
t
a
A.
μ
a
{\ displaystyle A _ {\ mu} = - it ^ {a} A _ {\ mu} ^ {a}}
Hermitian matrices and
t
a
{\ displaystyle t ^ {a}}
real functions of spacetime ,
A.
μ
a
{\ displaystyle A _ {\ mu} ^ {a}}
so the field strength tensor results from this theory
F.
μ
ν
=
D.
μ
A.
ν
-
D.
ν
A.
μ
=
-
i
t
a
(
∂
μ
A.
ν
a
-
∂
ν
A.
μ
a
+
f
a
b
c
A.
μ
b
A.
ν
c
)
,
{\ displaystyle {\ begin {aligned} F _ {\ mu \ nu} & = D _ {\ mu} A _ {\ nu} -D _ {\ nu} A _ {\ mu} \\ & = - it ^ {a} ( \ partial _ {\ mu} A _ {\ nu} ^ {a} - \ partial _ {\ nu} A _ {\ mu} ^ {a} + f ^ {abc} A _ {\ mu} ^ {b} A_ { \ nu} ^ {c}), \ end {aligned}}}
where the real numbers come from the commutator .
f
a
b
c
{\ displaystyle f ^ {abc}}
[
t
a
,
t
b
]
=
i
f
a
b
c
t
c
{\ displaystyle [t ^ {a}, t ^ {b}] = if ^ {abc} t ^ {c}}
The Lagrangian for the field can then be chosen as , this is the Yang-Mills Lagrangian.
L.
{\ displaystyle L}
A.
μ
{\ displaystyle A _ {\ mu}}
L.
∝
F.
μ
ν
a
F.
a
μ
ν
{\ displaystyle L \ propto F _ {\ mu \ nu} ^ {a} F ^ {a \ mu \ nu}}
Electromagnetism
For quantum electrodynamics corresponds to the known vector potential . Since its components interchange, the form of the field strength tensor is simplified
A.
μ
{\ displaystyle A _ {\ mu}}
F.
μ
ν
=
∂
μ
A.
ν
-
∂
ν
A.
μ
{\ displaystyle F _ {\ mu \ nu} = \ partial _ {\ mu} A _ {\ nu} - \ partial _ {\ nu} A _ {\ mu}}
For its further properties, see Electromagnetic field strength tensor .
literature
V. Parameswaran Nair: Quantum Field Theory - A Modern Perspective , Springer 2005 - Chapter 10.1
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">