In the mathematics is generalized mean , the Hölder average (by Otto Holder , 1859-1937) or the power means (engl. U. A. (p-th) power mean ) a (sometimes of ) a generalized average . The term is not uniform, names like - te agents , means the order or the degree or with exponent are also in circulation. In English it is also known as a generalized mean .
p
{\ displaystyle p}
p
{\ displaystyle p}
The spellings are just as inconsistent, instead of being written , or .
H
p
{\ displaystyle H_ {p}}
M.
p
(
x
)
{\ displaystyle M_ {p} (x)}
m
p
(
x
)
{\ displaystyle m_ {p} (x)}
μ
p
(
x
)
{\ displaystyle \ mu _ {p} (x)}
The Hölder mean generalizes the mean values known since the Pythagoreans such as the arithmetic , geometric , quadratic and harmonic mean by introducing a parameter
p
.
{\ displaystyle p.}
definition
For a real number , the Hölder mean of the numbers for the level is defined as
p
≠
0
{\ displaystyle p \ neq 0}
x
1
,
...
,
x
n
≥
0
{\ displaystyle x_ {1}, \ ldots, x_ {n} \ geq 0}
p
{\ displaystyle p}
M.
p
(
x
1
,
...
,
x
n
)
=
(
1
n
⋅
∑
i
=
1
n
x
i
p
)
1
/
p
=
x
1
p
+
x
2
p
+
...
+
x
n
p
n
p
{\ displaystyle M_ {p} (x_ {1}, \ dots, x_ {n}) = \ left ({\ frac {1} {n}} \ cdot \ sum _ {i = 1} ^ {n} x_ {i} ^ {p} \ right) ^ {1 / p} = {\ sqrt [{p}] {\ frac {x_ {1} ^ {p} + x_ {2} ^ {p} + \ ldots + x_ {n} ^ {p}} {n}}}}
,
where the root notation is usually only used for natural numbers .
p
{\ displaystyle p}
A suitable definition for is
p
=
0
{\ displaystyle p = 0}
M.
0
(
x
1
,
...
,
x
n
)
: =
lim
s
→
0
M.
s
(
x
1
,
...
,
x
n
)
.
{\ displaystyle M_ {0} (x_ {1}, \ ldots, x_ {n}): = \ lim _ {s \ to 0} M_ {s} (x_ {1}, \ ldots, x_ {n}) .}
properties
The Holder mean is homogeneous in terms of , that is
x
1
...
,
x
n
{\ displaystyle x_ {1} \ ldots, x_ {n}}
M.
p
(
α
x
1
,
...
,
α
x
n
)
=
α
⋅
M.
p
(
x
1
,
...
,
x
n
)
{\ displaystyle M_ {p} (\ alpha \, x_ {1}, \ ldots, \ alpha \, x_ {n}) = \ alpha \ cdot M_ {p} (x_ {1}, \ ldots, x_ {n })}
M.
p
(
x
1
,
...
,
x
n
⋅
k
)
=
M.
p
(
M.
p
(
x
1
,
...
,
x
k
)
,
M.
p
(
x
k
+
1
,
...
,
x
2
⋅
k
)
,
...
,
M.
p
(
x
(
n
-
1
)
⋅
k
+
1
,
...
,
x
n
⋅
k
)
)
{\ displaystyle M_ {p} (x_ {1}, \ dots, x_ {n \ cdot k}) = M_ {p} (M_ {p} (x_ {1}, \ dots, x_ {k}), M_ {p} (x_ {k + 1}, \ dots, x_ {2 \ cdot k}), \ dots, M_ {p} (x _ {(n-1) \ cdot k + 1}, \ dots, x_ { n \ cdot k}))}
An important inequality to the Hölder means is
p
<
q
⇒
M.
p
(
x
1
,
...
,
x
n
)
≤
M.
q
(
x
1
,
...
,
x
n
)
{\ displaystyle p <q \ quad \ Rightarrow \ quad M_ {p} (x_ {1}, \ ldots, x_ {n}) \ leq M_ {q} (x_ {1}, \ ldots, x_ {n}) }
From this follows (special cases) the inequality of the mean values
min
(
x
1
,
...
,
x
n
)
≤
x
¯
H
a
r
m
≤
x
¯
G
e
O
m
≤
x
¯
a
r
i
t
H
m
≤
x
¯
q
u
a
d
r
≤
x
¯
k
u
b
i
s
c
H
≤
Max
(
x
1
,
...
,
x
n
)
{\ displaystyle \ min (x_ {1}, \ ldots, x_ {n}) \ leq {\ bar {x}} _ {\ mathrm {harm}} \ leq {\ bar {x}} _ {\ mathrm { geom}} \ leq {\ bar {x}} _ {\ mathrm {arithm}} \ leq {\ bar {x}} _ {\ mathrm {quadr}} \ leq {\ bar {x}} _ {\ mathrm {cubic}} \ leq \ max (x_ {1}, \ ldots, x_ {n})}
The power means are quite simply related to the sample moments around zero:
m
p
{\ displaystyle m_ {p}}
x
¯
(
p
)
=
m
p
p
{\ displaystyle {\ bar {x}} (p) = {\ sqrt [{p}] {m_ {p}}}}
Special cases
Graphic representation of different mean values of two values
a, b
The known mean values are obtained by selecting a suitable parameter :
p
{\ displaystyle p}
lim
p
→
-
∞
{\ displaystyle \ lim _ {p \ to - \ infty}}
M.
p
(
x
1
,
...
,
x
n
)
{\ displaystyle M_ {p} (x_ {1}, \ dots, x_ {n})}
=
min
{
x
1
,
...
,
x
n
}
{\ displaystyle = \ min \ {x_ {1}, \ dots, x_ {n} \}}
minimum
p
=
-
1
{\ displaystyle p = -1}
M.
-
1
(
x
1
,
...
,
x
n
)
{\ displaystyle M _ {- 1} (x_ {1}, \ dots, x_ {n})}
=
n
1
x
1
+
⋯
+
1
x
n
{\ displaystyle = {\ frac {n} {{\ frac {1} {x_ {1}}} + \ dots + {\ frac {1} {x_ {n}}}}}}
Harmonious mean
lim
p
→
0
{\ displaystyle \ lim _ {p \ to 0}}
M.
p
(
x
1
,
...
,
x
n
)
{\ displaystyle M_ {p} (x_ {1}, \ dots, x_ {n})}
=
x
1
⋅
⋯
⋅
x
n
n
{\ displaystyle = {\ sqrt [{n}] {x_ {1} \ cdot \ dots \ cdot x_ {n}}}}
Geometric mean
p
=
1
{\ displaystyle p = 1}
M.
1
(
x
1
,
...
,
x
n
)
{\ displaystyle M_ {1} (x_ {1}, \ dots, x_ {n})}
=
x
1
+
⋯
+
x
n
n
{\ displaystyle = {\ frac {x_ {1} + \ dots + x_ {n}} {n}}}
Arithmetic mean
p
=
2
{\ displaystyle p = 2}
M.
2
(
x
1
,
...
,
x
n
)
{\ displaystyle M_ {2} (x_ {1}, \ dots, x_ {n})}
=
x
1
2
+
⋯
+
x
n
2
n
{\ displaystyle = {\ sqrt {\ frac {x_ {1} ^ {2} + \ dots + x_ {n} ^ {2}} {n}}}}
Square mean
p
=
3
{\ displaystyle p = 3}
M.
3
(
x
1
,
...
,
x
n
)
{\ displaystyle M_ {3} (x_ {1}, \ dots, x_ {n})}
=
x
1
3
+
⋯
+
x
n
3
n
3
{\ displaystyle = {\ sqrt [{3}] {\ frac {x_ {1} ^ {3} + \ dots + x_ {n} ^ {3}} {n}}}}
Cubic mean
lim
p
→
∞
{\ displaystyle \ lim _ {p \ to \ infty}}
M.
p
(
x
1
,
...
,
x
n
)
{\ displaystyle M_ {p} (x_ {1}, \ dots, x_ {n})}
=
Max
{
x
1
,
...
,
x
n
}
{\ displaystyle = \ max \ {x_ {1}, \ dots, x_ {n} \}}
maximum
Further generalizations
Weighted Holder mean
Also to the generalized mean a can weighted mean define: The weighted generalized mean can be with the weights with defined as
ω
1
,
ω
2
,
...
,
ω
n
{\ displaystyle \ omega _ {1}, \ omega _ {2}, \ ldots, \ omega _ {n}}
ω
1
+
ω
2
+
...
+
ω
n
=
1
{\ displaystyle \ omega _ {1} + \ omega _ {2} + \ ldots + \ omega _ {n} = 1}
M.
ω
p
=
(
ω
1
⋅
x
1
p
+
ω
2
⋅
x
2
p
+
...
+
ω
n
⋅
x
n
p
)
1
/
p
,
{\ displaystyle {M _ {\ omega}} ^ {p} = \ left (\ omega _ {1} \ cdot x_ {1} ^ {p} + \ omega _ {2} \ cdot x_ {2} ^ {p } + \ ldots + \ omega _ {n} \ cdot x_ {n} ^ {p} \ right) ^ {1 / p},}
where the unweighted Hölder mean is used.
ω
1
=
ω
2
=
...
=
ω
n
=
1
n
{\ displaystyle \ omega _ {1} = \ omega _ {2} = \ ldots = \ omega _ {n} = {\ tfrac {1} {n}}}
f-means
Compare quasi-arithmetic mean
The Holder means can be further generalized
M.
f
(
x
1
,
...
,
x
n
)
=
f
-
1
(
1
n
⋅
∑
i
=
1
n
f
(
x
i
)
)
{\ displaystyle M_ {f} (x_ {1}, \ dots, x_ {n}) = f ^ {- 1} \ left ({{\ frac {1} {n}} \ cdot \ sum _ {i = 1} ^ {n} {f (x_ {i})}} \ right)}
or weighted to
M.
f
(
x
1
,
...
,
x
n
)
=
f
-
1
(
∑
i
=
1
n
ω
i
f
(
x
i
)
)
{\ displaystyle M_ {f} (x_ {1}, \ dots, x_ {n}) = f ^ {- 1} \ left ({\ sum _ {i = 1} ^ {n} {\ omega _ {i } f (x_ {i})}} \ right)}
Where is a function of ; the Holder means used .
f
{\ displaystyle f}
x
{\ displaystyle x}
f
(
x
)
=
x
p
{\ displaystyle \, f (x) = x ^ {p}}
More examples :
If the returns on an investment are in the years to , the average return is obtained as the mean of the individual returns for the function .
x
1
,
...
,
x
n
≥
0
{\ displaystyle x_ {1}, \ ldots, x_ {n} \ geq 0}
1
{\ displaystyle 1}
n
{\ displaystyle n}
f
{\ displaystyle f}
f
(
x
)
=
ln
(
1
+
x
)
{\ displaystyle \, f (x) = \ ln (1 + x)}
If the ages of persons are, the actuarial average age is obtained as the mean of the individual ages for the function ; where means the death intensity. In practice, the sum-weighted actuarial average age is relevant; here the ages of the insured persons are weighted with the respective insured sums; the death intensity is often replaced by the one year probability of death .
x
1
,
...
,
x
n
{\ displaystyle x_ {1}, \ ldots, x_ {n}}
n
{\ displaystyle n}
f
{\ displaystyle f}
f
(
x
)
=
μ
x
{\ displaystyle \, f (x) = \ mu _ {x}}
μ
x
{\ displaystyle \, \ mu _ {x}}
q
x
{\ displaystyle \, q_ {x}}
See also
literature
Julian Havil : Gamma: Euler's constant, prime number beaches and the Riemann hypothesis , Springer, Berlin 2007, ISBN 978-3-540-48495-0
PS Bulls: Handbook of Means and Their Inequalities . Dordrecht, Netherlands: Kluwer, 2003, pp. 175–265
Web links
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">