Hadamard's series of gaps

from Wikipedia, the free encyclopedia

Hadamard's gap series is a term from the mathematical branch of function theory . This term refers to a complex-valued power series with development point zero , the coefficients a gap condition sufficient (see below)

The term refers to the French mathematician Jacques Hadamard (1865–1963), who in an important work from 1892 examined the relationships between the singularities of a holomorphic function and the coefficients of its Taylor expansion . The general problem underlying here is the question of the boundary behavior of power series . It is about the question of the holomorphic areas of the holomorphic functions belonging to a given power series and the extent to which the edge of the convergence circle of a power series represents its natural limit .

Gap condition

A (Hadamard's) gap series is a complex power series that fulfills the following property:

(HL) There is a strictly monotonically increasing number sequence     of natural numbers and a real number   such that:  

(HL1) For     is always    .
(HL2) For     are always     and at the same time    , if    .

The following applies:

(HL *)     with  

Hadamard's set of gaps

The gap set of Hadamard (in English-speaking countries also Ostrowski Hadamard Gap theorem called) now makes the statement that means Hadamardscher gap rows given holomorphic functions nowhere continued analytically are.

More precisely:

Is a complex-valued power series     with the radius of convergence of   a Hadamard series gap, the corresponding holomorphic function is   nowhere on the open convergence circular disk     also be continued and the boundary   is the natural boundary.      

Related sentence: Fabry's gap sentence

One of the sharpest non-continuability theorems is Fabry's gap theorem - so named after the French mathematician Eugène Fabry - which even includes Hadamard's gap theorem and reads as follows:

If a complex-valued power series   with the radius of convergence   fulfills     the condition    , the associated holomorphic function can   not be   continued anywhere beyond the open disk of convergence   and the boundary     forms the natural limit.  

Summary

The statement of both sentences can be summarized as follows:

Under the respective conditions, the convergence circle is     the holomorphic area of the associated holomorphic function  

Two examples

(1)
(2)

In both cases the holomorphic area is the unit disk .

literature

  • Heinrich Behnke , Friedrich Sommer : Theory of the analytical functions of a complex variable (=  The basic teachings of the mathematical sciences in individual representations . Volume 77 ). Springer-Verlag, Berlin / Göttingen / Heidelberg 1965.
  • Alexander Dinghas : Lectures on Function Theory (=  The Basic Teachings of Mathematical Sciences in Individual Representations . Volume 110 ). Springer-Verlag, Berlin / Göttingen / Heidelberg 1961. MR0179329
  • J. Hadamard : Essai sur l'étude des fonctions données par leur développement de Taylor . In: Journ. Pure math. appl. tape 8 , 1892, p. 101-186 .
  • J.-P. Kahane : Lacunary Taylor and Fourier series . In: Bull. Amer. Math. Soc . tape 70 , 1964, pp. 199-213 . MR0162919
  • Reinhold Remmert , Georg Schumacher: Function theory 2 (=  Springer textbook - basic knowledge of mathematics ). 3rd, revised edition. Springer-Verlag, Berlin [a. a.] 2007, ISBN 978-3-540-40432-3 .
  • Walter Rudin : Real and Complex Analysis . 2nd improved edition. Oldenbourg Wissenschaftsverlag, Munich 2009, ISBN 978-3-486-59186-6 .

References and comments

  1. Reinhold Remmert , Georg Schumacher: Function Theory 2 (=  Springer textbook - basic knowledge of mathematics ). 3rd, revised edition. Springer-Verlag, Berlin [a. a.] 2007, ISBN 978-3-540-40432-3 , pp. 249 .
  2. In English-language sources one speaks of the lacunary series ; see. for example the work of Kahane, in: Bull. Amer. Math. Soc. , Volume 70, p. 199 ff. Or Lacunary series in the English language Wikipedia.
  3. Reinhold Remmert , Georg Schumacher: Function Theory 2 (=  Springer textbook - basic knowledge of mathematics ). 3rd, revised edition. Springer-Verlag, Berlin [a. a.] 2007, ISBN 978-3-540-40432-3 , pp. 241 ff .
  4. ^ Walter Rudin : Real and Complex Analysis . 2nd improved edition. Oldenbourg Wissenschaftsverlag, Munich 2009, ISBN 978-3-486-59186-6 , p. 384 ff .
  5. According to Remmert / Schumacher, Funktionentheorie 2 , pp. 121, 251, the discovery of natural limits goes back to Karl Weierstrass and Leopold Kronecker .
  6. If you set    , you have a representation    that you can also find in the literature.
  7. See Ostrowski-Hadamard Gap Theorem at MATHWORLD. The English naming is related to the fact that Hadamard's gap sentence can be traced back to a sentence by Alexander Markowitsch Ostrowski ; s. Walter Rudin : Real and Complex Analysis . 2nd improved edition. Oldenbourg Wissenschaftsverlag, Munich 2009, ISBN 978-3-486-59186-6 , p. 384 ff .
  8. Heinrich Behnke , Friedrich Sommer : Theory of the analytical functions of a complex variable (=  The basic teachings of the mathematical sciences in individual representations . Volume 77 ). Springer-Verlag, Berlin / Göttingen / Heidelberg 1965, p. 183 .
  9. Reinhold Remmert , Georg Schumacher: Function Theory 2 (=  Springer textbook - basic knowledge of mathematics ). 3rd, revised edition. Springer-Verlag, Berlin [a. a.] 2007, ISBN 978-3-540-40432-3 , pp. 249 .
  10. ^ Walter Rudin : Real and Complex Analysis . 2nd improved edition. Oldenbourg Wissenschaftsverlag, Munich 2009, ISBN 978-3-486-59186-6 , p. 385-386 .
  11. The gap theorem is often referred to in English-language sources as Fabry's gap theorem (or similar).
  12. Dinghas: Lectures on Function Theory . S. 127 ff .
  13. Reinhold Remmert , Georg Schumacher: Function Theory 2 (=  Springer textbook - basic knowledge of mathematics ). 3rd, revised edition. Springer-Verlag, Berlin [a. a.] 2007, ISBN 978-3-540-40432-3 , pp. 253 .
  14. The case     is not excluded in each case .
  15. Reinhold Remmert , Georg Schumacher: Function Theory 2 (=  Springer textbook - basic knowledge of mathematics ). 3rd, revised edition. Springer-Verlag, Berlin [a. a.] 2007, ISBN 978-3-540-40432-3 , pp. 250 .
  16. ^ Walter Rudin : Real and Complex Analysis . 2nd improved edition. Oldenbourg Wissenschaftsverlag, Munich 2009, ISBN 978-3-486-59186-6 , p. 384 .