# Hyper operator

The hyper operator is a continuation of the conventional mathematical operators of addition , multiplication and exponentiation . It is used to briefly display large numbers such as power towers .

${\ displaystyle \ operatorname {hyper} {\ mathit {n}} (a, b) = \ operatorname {hyper} (a, n, b) = a ^ {(n)} b = a \ uparrow ^ {n- 2 B.}$ ## Derivation of the notation

Based on the observations

• ${\ displaystyle a + (b + 1) = 1 + \ left (a + b \ right)}$ • ${\ displaystyle a \ cdot (b + 1) = a + \ left (a \ cdot b \ right)}$ • ${\ displaystyle a ^ {(b + 1)} = a \ cdot \ left (a ^ {b} \ right)}$ define a three-digit operator recursively (with ) ${\ displaystyle a, b, n \ geq 0}$ ${\ displaystyle a ^ {(n)} b: = {\ begin {cases} b + 1, & {\ text {if}} n = 0 \\ a, & {\ text {if}} n = 1, b = 0 \\ 0, & {\ text {if}} n = 2, b = 0 \\ 1, & {\ text {if}} n> 2, b = 0 \\ a ^ {(n-1 )} \ left (a ^ {(n)} (b-1) \ right) & {\ text {otherwise}} \ end {cases}}}$ and introduces the following terms:

${\ displaystyle \ operatorname {hyper} {\ mathit {n}} (a, b) = \ operatorname {hyper} (a, n, b) = a ^ {(n)} b.}$ (It should be noted with this notation that the spelling of and does not represent a multiplication, i.e. every actually occurring multiplication with the explicit operator must be noted. Likewise, there is no exponentiation. The use of the notation , on the other hand, rules out such possible confusion. ${\ displaystyle a ^ {(n)}}$ ${\ displaystyle b}$ ${\ displaystyle \ cdot}$ ${\ displaystyle a ^ {(n)}}$ ${\ displaystyle \ operatorname {hyper} (a, n, b)}$ Thus hyper1 is the addition , hyper2 the multiplication and hyper3 the exponentiation . hyper4 is also known as tetration or superpotency and can be noted as follows:

${\ displaystyle \ operatorname {hyper4} (a, b) = {} ^ {b} a}$ .

More generally understandable one could also say: Write the number - times in a row and insert the operator one step lower in between. ${\ displaystyle a}$ ${\ displaystyle b}$ The family has been expanded for not for real numbers because there are several “obvious” ways to do this, but they are not associative . ${\ displaystyle n> 3}$ ## Knuth's arrow notation

Another notation for the hyperoperator was developed by Donald Knuth , which is known as arrow notation. The definition is

${\ displaystyle a \ underbrace {\ uparrow \ dotsb \ uparrow} _ {k {\ mbox {mal}}} b: = \ left \ {{\ begin {matrix} a ^ {b} & {\ mbox {falls} } k = 1 \\\ underbrace {a \ underbrace {\ uparrow \ dotsb \ uparrow} _ {k-1 {\ mbox {mal}}} a \ underbrace {\ uparrow \ dotsb \ uparrow} _ {k-1 { \ mbox {mal}}} \ dotsb \ underbrace {\ uparrow \ dotsb \ uparrow} _ {k-1 {\ mbox {mal}}} a} _ {b {\ mbox {mal}}} & {\ mbox { otherwise}} \ end {matrix}} \ right.}$ Another notation uses the symbol instead of the arrow . With the definition, the following applies ${\ displaystyle \ uparrow}$ ${\ displaystyle {\ hat {\ hbox {}}}}$ ${\ displaystyle a \ underbrace {\ uparrow \ dotsb \ uparrow} _ {n {\ mbox {mal}}} b = a \ underbrace {{\ hat {\ hbox {}}} \ dotsb {\ hat {\ hbox { }}}} _ {n {\ mbox {mal}}} b = \ operatorname {hyper} (a, n + 2, b) = a ^ {(n + 2)} b}$ .

This notation is used to represent very large numbers such as Graham's number .

## Another extension

There is another way to get a more general definition of the link from the specifications, because it also applies

• ${\ displaystyle \, a + b = (a + (b-1)) + 1}$ • ${\ displaystyle a \ cdot b = (a \ cdot (b-1)) + a}$ • ${\ displaystyle a ^ {b} = \ left (a ^ {(b-1)} \ right) \ cdot a}$ ,

because the links are + and commutative . This gives the definition ${\ displaystyle \ cdot}$ ${\ displaystyle a _ {(n)} b: = {\ begin {cases} a + b, & {\ text {if}} n = 1 \\ 0, & {\ text {if}} n = 2, b = 0 \\ 1, & {\ text {if}} n> 2, b = 0 \\\ left (a _ {(n)} (b-1) \ right) _ {(n-1)} a, & {\ text {other}} \ end {cases}}}$ However, this notation "collapses" for ; In contrast to hyper4, it no longer results in a power tower: ${\ displaystyle n = 4}$ ${\ displaystyle a _ {(4)} b = a ^ {\ left (a ^ {(b-1)} \ right)}}$ How can and suddenly differ for? This is due to the associativity, a property that the operators and have (see also body ), but which the power operator lacks. (Generally is .) ${\ displaystyle a ^ {(n)} b}$ ${\ displaystyle a _ {(n)} b}$ ${\ displaystyle n> 3}$ ${\ displaystyle +}$ ${\ displaystyle \ cdot}$ ${\ displaystyle a ^ {b ^ {c}} = a ^ {(b ^ {c})} \ neq (a ^ {b}) ^ {c} = a ^ {b \ cdot c}}$ The other levels do not collapse in this way, which is why this family of operators, called "lower hyper-operators", is also of interest.

## Examples

${\ displaystyle 3 ^ {(1)} 3 = 3 + 3 = 6.}$ ### multiplication

${\ displaystyle 3 ^ {(2)} 3 = 3 \ cdot 3 = 3 ^ {(1)} 3 ^ {(1)} 3 = 3 + 3 + 3 = 9.}$ ### Exponentiation

${\ displaystyle 3 ^ {(3)} 3 = 3 ^ {3} = 3 ^ {(2)} 3 ^ {(2)} 3 = 3 \ cdot 3 \ cdot 3 = 27.}$ ### Tetration

{\ displaystyle {\ begin {aligned} 3 ^ {(4)} 3 & = 3 ^ {3 ^ {3}} \\ & = 3 ^ {(3)} (3 ^ {(4)} 2) \\ & = 3 ^ {(3)} (3 ^ {(3)} (3 ^ {(4)} 1)) \\ & = 3 ^ {(3)} (3 ^ {(3)} (3 ^ {(3)} (3 ^ {(4)} 0))) \\ & = 3 ^ {(3)} (3 ^ {(3)} (3 ^ {(3)} 1)) \\ & = 3 ^ {3 ^ {3 ^ {1}}} \\ & = 3 ^ {27} \\ & = 7,625,597,484,987. \ End {aligned}}} It should be noted here that this applies, see also the power tower . ${\ displaystyle 3 ^ {3 ^ {3}} = 3 ^ {(3 ^ {3})}}$ 