The majorant criterion  is a mathematical   convergence criterion  for infinite series  . The basic idea is to estimate a series by a larger one, called a majorante  , whose   convergence is  known. Conversely, the divergence can be demonstrated with a minor edge  .
Formulation of the criterion  
Be an infinite series
  
    
      
        S. 
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          a 
          
            n 
           
         
       
     
    {\ displaystyle S = \ sum _ {n = 0} ^ {\ infty} a_ {n}} 
   
  
given with real or complex summands . Now is there a convergent  infinite series
  
    
      
        
          a 
          
            n 
           
         
       
     
    {\ displaystyle a_ {n}} 
   
  
  
    
      
        T 
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          b 
          
            n 
           
         
       
     
    {\ displaystyle T = \ sum _ {n = 0} ^ {\ infty} b_ {n}} 
   
  
with non-negative real terms and applies to almost all  :
  
    
      
        
          b 
          
            n 
           
         
       
     
    {\ displaystyle b_ {n}} 
   
   
  
    
      
        n 
       
     
    {\ displaystyle n} 
   
  
  
    
      
        
          | 
         
        
          a 
          
            n 
           
         
        
          | 
         
        ≤ 
        
          b 
          
            n 
           
         
        , 
       
     
    {\ displaystyle | a_ {n} | \ leq b_ {n},} 
   
  
then the series is absolutely convergent  . It is said that the row is majorized by or is the majorante of .
  
    
      
        S. 
       
     
    {\ displaystyle S} 
   
   
  
    
      
        S. 
       
     
    {\ displaystyle S} 
   
 
  
    
      
        T 
       
     
    {\ displaystyle T} 
   
 
  
    
      
        T 
       
     
    {\ displaystyle T} 
   
 
  
    
      
        S. 
       
     
    {\ displaystyle S} 
   
  
If one reverses this conclusion, one obtains the minorant criterion  : are and series with nonnegative real summands or , and applies
  
    
      
        S. 
       
     
    {\ displaystyle S} 
   
 
  
    
      
        T 
       
     
    {\ displaystyle T} 
   
 
  
    
      
        
          a 
          
            n 
           
         
       
     
    {\ displaystyle a_ {n}} 
   
 
  
    
      
        
          b 
          
            n 
           
         
       
     
    {\ displaystyle b_ {n}} 
   
 
  
    
      
        
          a 
          
            n 
           
         
        ≥ 
        
          b 
          
            n 
           
         
       
     
    {\ displaystyle a_ {n} \ geq b_ {n}} 
   
  
for almost everyone , then it follows: If it is divergent, then it is also divergent.
  
    
      
        n 
       
     
    {\ displaystyle n} 
   
 
  
    
      
        T 
       
     
    {\ displaystyle T} 
   
 
  
    
      
        S. 
       
     
    {\ displaystyle S} 
   
 
proof  
The series converges , then, for every one , so for all (does Cauchy's convergence test  ).
  
    
      
        T 
        = 
        
          ∑ 
          
            ν 
            = 
            0 
           
          
            ∞ 
           
         
        
          b 
          
            ν 
           
         
       
     
    {\ displaystyle T = \ sum _ {\ nu = 0} ^ {\ infty} b _ {\ nu}} 
   
 
  
    
      
        ε 
        > 
        0 
       
     
    {\ displaystyle \ varepsilon> 0} 
   
 
  
    
      
        N 
        ∈ 
        
          N 
         
       
     
    {\ displaystyle N \ in \ mathbb {N}} 
   
 
  
    
      
        
          ∑ 
          
            ν 
            = 
            n 
           
          
            m 
           
         
        
          b 
          
            ν 
           
         
        < 
        ε 
       
     
    {\ displaystyle \ sum _ {\ nu = n} ^ {m} b _ {\ nu} <\ varepsilon} 
   
 
  
    
      
        m 
        ≥ 
        n 
        > 
        N 
       
     
    {\ displaystyle m \ geq n> N} 
   
  
From the triangle inequality  and it follows . From this follows the (absolute!) Convergence of according to the Cauchy criterion .
  
    
      
        
          | 
         
        
          a 
          
            ν 
           
         
        
          | 
         
        ≤ 
        
          b 
          
            ν 
           
         
       
     
    {\ displaystyle | a _ {\ nu} | \ leq b _ {\ nu}} 
   
 
  
    
      
        
          
            | 
           
         
        
          ∑ 
          
            ν 
            = 
            n 
           
          
            m 
           
         
        
          a 
          
            ν 
           
         
        
          
            | 
           
         
        ≤ 
        
          ∑ 
          
            ν 
            = 
            n 
           
          
            m 
           
         
        
          | 
         
        
          a 
          
            ν 
           
         
        
          | 
         
        ≤ 
        
          ∑ 
          
            ν 
            = 
            n 
           
          
            m 
           
         
        
          b 
          
            ν 
           
         
        < 
        ε 
       
     
    {\ displaystyle {\ Big |} \ sum _ {\ nu = n} ^ {m} a _ {\ nu} {\ Big |} \ leq \ sum _ {\ nu = n} ^ {m} | a _ {\ nu} | \ leq \ sum _ {\ nu = n} ^ {m} b _ {\ nu} <\ varepsilon} 
   
 
  
    
      
        S. 
        = 
        
          ∑ 
          
            ν 
            = 
            0 
           
          
            ∞ 
           
         
        
          a 
          
            ν 
           
         
       
     
    {\ displaystyle S = \ sum _ {\ nu = 0} ^ {\ infty} a _ {\ nu}} 
   
 
example  
The geometric series 
  
    
      
        T 
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            1 
            
              2 
              
                n 
               
             
           
         
        = 
        
          
            1 
            1 
           
         
        + 
        
          
            1 
            2 
           
         
        + 
        
          
            1 
            4th 
           
         
        + 
        
          
            1 
            8th 
           
         
        + 
        
          
            1 
            16 
           
         
        + 
        ⋯ 
       
     
    {\ displaystyle T = \ sum _ {n = 0} ^ {\ infty} {\ frac {1} {2 ^ {n}}} = {\ frac {1} {1}} + {\ frac {1} {2}} + {\ frac {1} {4}} + {\ frac {1} {8}} + {\ frac {1} {16}} + \ dotsb} 
   
  
is convergent. Because of this , the series also converges
  
    
      
        
          
            1 
            
              
                2 
                
                  n 
                 
               
              + 
              1 
             
           
         
        ≤ 
        
          
            1 
            
              2 
              
                n 
               
             
           
         
       
     
    {\ displaystyle {\ frac {1} {2 ^ {n} +1}} \ leq {\ frac {1} {2 ^ {n}}}} 
   
 
  
    
      
        S. 
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            1 
            
              
                2 
                
                  n 
                 
               
              + 
              1 
             
           
         
        = 
        
          
            1 
            2 
           
         
        + 
        
          
            1 
            3 
           
         
        + 
        
          
            1 
            5 
           
         
        + 
        
          
            1 
            9 
           
         
        + 
        
          
            1 
            17th 
           
         
        + 
        ⋯ 
       
     
    {\ displaystyle S = \ sum _ {n = 0} ^ {\ infty} {\ frac {1} {2 ^ {n} +1}} = {\ frac {1} {2}} + {\ frac { 1} {3}} + {\ frac {1} {5}} + {\ frac {1} {9}} + {\ frac {1} {17}} + \ dotsb} 
   
  .  
Applications  
The majorant criterion is also referred to as the most general form of a comparison criterion of the first type, all others result from the insertion of specific series for . Most prominent are the root criterion  and the  quotient  criterion  , in which the  geometric series  is chosen as a comparison  series  .
  
    
      
        T 
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          b 
          
            n 
           
         
       
     
    {\ displaystyle T = \ sum _ {n = 0} ^ {\ infty} b_ {n}} 
   
  
Cauchy's compression  criterion can also be derived from the majorant or minorant criterion , with which, for example, it can be shown that the harmonic series 
  
    
      
        
          S. 
          
            n 
           
         
        = 
        
          ∑ 
          
            k 
            = 
            1 
           
          
            n 
           
         
        
          
            1 
            
              k 
              
                α 
               
             
           
         
       
     
    {\ displaystyle S_ {n} = \ sum _ {k = 1} ^ {n} {\ frac {1} {k ^ {\ alpha}}}} 
   
  
convergent for and divergent for is.
  
    
      
        α 
        > 
        1 
       
     
    {\ displaystyle \ alpha> 1} 
   
 
  
    
      
        0 
        < 
        α 
        ≤ 
        1 
       
     
    {\ displaystyle 0 <\ alpha \ leq 1} 
   
 
The majorant criterion can be extended to the case of normalized vector spaces  ; it then states that if it applies to almost all , the partial sum sequence of  is a  Cauchy sequence  . Is the room  complete  , i.e. H. a  Banach space  , so converges if converges. In particular,  Banach's fixed point theorem  follows , which is used in many constructive theorems of analysis.
  
    
      
        ‖ 
        
          a 
          
            n 
           
         
        ‖ 
        ≤ 
        
          b 
          
            n 
           
         
       
     
    {\ displaystyle \ | a_ {n} \ | \ leq b_ {n}} 
   
 
  
    
      
        n 
       
     
    {\ displaystyle n} 
   
 
  
    
      
        S. 
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          a 
          
            n 
           
         
       
     
    {\ displaystyle S = \ sum _ {n = 0} ^ {\ infty} a_ {n}} 
   
 
  
    
      
        S. 
       
     
    {\ displaystyle S} 
   
 
  
    
      
        T 
       
     
    {\ displaystyle T} 
   
  
See also  
Web links  
literature  
 
<img src="https://de.wikipedia.org//de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">