In mathematical branch  of functional analysis  is the maximum tensor product  of C * -algebras  a construction * -algebras with which one of two C and a new one gets designated C * algebra. It is a matter  of  completing  the algebraic  tensor product  of and with a suitable norm . The construction presented below goes back to  A. Guichardet  .
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
 
  
    
      
        A. 
        
          ⊗ 
          
            
              m 
              a 
              x 
             
           
         
        B. 
       
     
    {\ displaystyle A \ otimes _ {\ mathrm {max}} B} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
  
construction  
Let and two C * -algebras. A C * half-form  on the algebraic tensor product is a  half-norm  such that
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
 
  
    
      
        A. 
        ⊙ 
        B. 
       
     
    {\ displaystyle A \ odot B} 
   
   
  
    
      
        α 
       
     
    {\ displaystyle \ alpha} 
   
  
  
    
      
        α 
        ( 
        s 
        t 
        ) 
        ≤ 
        α 
        ( 
        s 
        ) 
        α 
        ( 
        t 
        ) 
       
     
    {\ displaystyle \ alpha (st) \ leq \ alpha (s) \ alpha (t)} 
   
   for all 
  
    
      
        s 
        , 
        t 
        ∈ 
        A. 
        ⊙ 
        B. 
       
     
    {\ displaystyle s, t \ in A \ odot B} 
   
  
 
  
    
      
        α 
        ( 
        
          s 
          
            ∗ 
           
         
        s 
        ) 
         
        = 
         
        α 
        ( 
        s 
        
          ) 
          
            2 
           
         
       
     
    {\ displaystyle \ alpha (s ^ {*} s) \, = \, \ alpha (s) ^ {2}} 
   
   for all 
  
    
      
        s 
        ∈ 
        A. 
        ⊙ 
        B. 
       
     
    {\ displaystyle s \ in A \ odot B} 
   
  
 
 
One can show that for everyone and . For an element it therefore follows for every C * half-norm. Therefore , where it goes through all the C * half-norms is finite, and it is easy to confirm that a C * half-norm is and by construction the largest on . It is even a norm, because the C * half-norms include the spatial C * norm  .
  
    
      
        α 
        ( 
        a 
        ⊗ 
        b 
        ) 
        ≤ 
        ‖ 
        a 
        ‖ 
        ‖ 
        b 
        ‖ 
       
     
    {\ displaystyle \ alpha (a \ otimes b) \ leq \ | a \ | \ | b \ |} 
   
 
  
    
      
        a 
        ∈ 
        A. 
       
     
    {\ displaystyle a \ in A} 
   
 
  
    
      
        b 
        ∈ 
        B. 
       
     
    {\ displaystyle b \ in B} 
   
 
  
    
      
        s 
        = 
        
          ∑ 
          
            i 
            = 
            1 
           
          
            n 
           
         
        
          a 
          
            i 
           
         
        ⊗ 
        
          b 
          
            i 
           
         
        ∈ 
        A. 
        ⊙ 
        B. 
       
     
    {\ displaystyle s = \ sum _ {i = 1} ^ {n} a_ {i} \ otimes b_ {i} \ in A \ odot B} 
   
 
  
    
      
        α 
        ( 
        s 
        ) 
        ≤ 
        
          ∑ 
          
            i 
            = 
            1 
           
          
            n 
           
         
        ‖ 
        
          a 
          
            i 
           
         
        ‖ 
        ‖ 
        
          b 
          
            i 
           
         
        ‖ 
       
     
    {\ displaystyle \ alpha (s) \ leq \ sum _ {i = 1} ^ {n} \ | a_ {i} \ | \ | b_ {i} \ |} 
   
 
  
    
      
        μ 
        ( 
        s 
        ) 
        : = 
        
          sup 
          
            α 
           
         
        α 
        ( 
        s 
        ) 
       
     
    {\ displaystyle \ mu (s): = \ sup _ {\ alpha} \ alpha (s)} 
   
 
  
    
      
        α 
       
     
    {\ displaystyle \ alpha} 
   
 
  
    
      
        μ 
       
     
    {\ displaystyle \ mu} 
   
 
  
    
      
        A. 
        ⊙ 
        B. 
       
     
    {\ displaystyle A \ odot B} 
   
  
The completion of with respect to this maximum C * -norm is called the maximum tensor product  from and and is denoted by, other authors write for it .
  
    
      
        A. 
        ⊙ 
        B. 
       
     
    {\ displaystyle A \ odot B} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
 
  
    
      
        A. 
        
          ⊗ 
          
            μ 
           
         
        B. 
       
     
    {\ displaystyle A \ otimes _ {\ mu} B} 
   
 
  
    
      
        A. 
        
          ⊗ 
          
            
              m 
              a 
              x 
             
           
         
        B. 
       
     
    {\ displaystyle A \ otimes _ {\ mathrm {max}} B} 
   
  
properties  
The maximum tensor product has the following useful property:
Let , and C * -algebras and as well as two * - homomorphisms  with interchanging images, that is, for all and . Then there is exactly one * homomorphism with for all and .
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
 
  
    
      
        C. 
       
     
    {\ displaystyle C} 
   
 
  
    
      
        φ 
        : 
        A. 
        → 
        C. 
       
     
    {\ displaystyle \ varphi: A \ rightarrow C} 
   
 
  
    
      
        ψ 
        : 
        B. 
        → 
        C. 
       
     
    {\ displaystyle \ psi: B \ rightarrow C} 
   
 
  
    
      
        φ 
        ( 
        a 
        ) 
        ψ 
        ( 
        b 
        ) 
        = 
        ψ 
        ( 
        b 
        ) 
        φ 
        ( 
        a 
        ) 
       
     
    {\ displaystyle \ varphi (a) \ psi (b) = \ psi (b) \ varphi (a)} 
   
 
  
    
      
        a 
        ∈ 
        A. 
       
     
    {\ displaystyle a \ in A} 
   
 
  
    
      
        b 
        ∈ 
        B. 
       
     
    {\ displaystyle b \ in B} 
   
 
  
    
      
        π 
        : 
        A. 
        
          ⊗ 
          
            
              m 
              a 
              x 
             
           
         
        B. 
        → 
        C. 
       
     
    {\ displaystyle \ pi: A \ otimes _ {\ mathrm {max}} B \ rightarrow C} 
   
 
  
    
      
        π 
        ( 
        a 
        ⊗ 
        b 
        ) 
        = 
        φ 
        ( 
        a 
        ) 
        ψ 
        ( 
        b 
        ) 
       
     
    {\ displaystyle \ pi (a \ otimes b) = \ varphi (a) \ psi (b)} 
   
 
  
    
      
        a 
        ∈ 
        A. 
       
     
    {\ displaystyle a \ in A} 
   
 
  
    
      
        b 
        ∈ 
        B. 
       
     
    {\ displaystyle b \ in B} 
   
  
If and are C * -algebras, then a pair is called an exchanging pair of representations of , if and Hilbert space representations are  on the same  Hilbert space  and for all and holds. With this concept formation the following formula can be set up for the maximum C * norm:
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
 
  
    
      
        ( 
        φ 
        , 
        ψ 
        ) 
       
     
    {\ displaystyle (\ varphi, \ psi)} 
   
 
  
    
      
        ( 
        A. 
        , 
        B. 
        ) 
       
     
    {\ displaystyle (A, B)} 
   
 
  
    
      
        φ 
        : 
        A. 
        → 
        L. 
        ( 
        H 
        ) 
       
     
    {\ displaystyle \ varphi: A \ rightarrow L (H)} 
   
 
  
    
      
        ψ 
        : 
        B. 
        → 
        L. 
        ( 
        H 
        ) 
       
     
    {\ displaystyle \ psi: B \ rightarrow L (H)} 
   
     
  
    
      
        H 
       
     
    {\ displaystyle H} 
   
 
  
    
      
        φ 
        ( 
        a 
        ) 
        ψ 
        ( 
        b 
        ) 
        = 
        ψ 
        ( 
        b 
        ) 
        φ 
        ( 
        a 
        ) 
       
     
    {\ displaystyle \ varphi (a) \ psi (b) = \ psi (b) \ varphi (a)} 
   
 
  
    
      
        a 
        ∈ 
        A. 
       
     
    {\ displaystyle a \ in A} 
   
 
  
    
      
        b 
        ∈ 
        B. 
       
     
    {\ displaystyle b \ in B} 
   
  
For two C * -algebras and and from the algebraic tensor product holds
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
 
  
    
      
        s 
        = 
        
          ∑ 
          
            j 
            = 
            1 
           
          
            n 
           
         
        
          a 
          
            j 
           
         
        ⊗ 
        
          b 
          
            j 
           
         
       
     
    {\ displaystyle s = \ sum _ {j = 1} ^ {n} a_ {j} \ otimes b_ {j}} 
   
 
  
    
      
        A. 
        ⊙ 
        B. 
       
     
    {\ displaystyle A \ odot B} 
   
 
  
    
      
        μ 
        ( 
        s 
        ) 
        = 
        sup 
        { 
        ‖ 
        
          ∑ 
          
            j 
            = 
            1 
           
          
            n 
           
         
        φ 
        ( 
        
          a 
          
            j 
           
         
        ) 
        ψ 
        ( 
        
          b 
          
            j 
           
         
        ) 
        ‖ 
        ; 
         
        ( 
        φ 
        , 
        ψ 
        ) 
        
          
             interchanging pair of representations of  
           
         
        ( 
        A. 
        , 
        B. 
        ) 
        } 
        . 
       
     
    {\ displaystyle \ mu (s) = \ sup \ {\ | \ sum _ {j = 1} ^ {n} \ varphi (a_ {j}) \ psi (b_ {j}) \ |; \, (\ varphi, \ psi) {\ mbox {interchanging pair of representations of}} (A, B) \}.} 
   
  
See also  
Individual evidence  
^    A. Guichardet: Tensor products of C * -algebras  , Aarhus University Lecture Notes, Volume 12 (1969) 
 
^    RV Kadison  , JR Ringrose  : Fundamentals of the Theory of Operator Algebras II  , 1983, ISBN 0-1239-3302-1  , §11.3 
 
↑    Gerald. J. Murphy: C * -Algebras and Operator Theory  , Academic Press Inc. (1990), ISBN 0-1251-1360-9  , chapter 6 
 
↑    Gerald. J. Murphy: C * -Algebras and Operator Theory  , Academic Press Inc. (1990), ISBN 0-1251-1360-9  , Theorem 6.3.7 
 
^    RV Kadison, JR Ringrose: Fundamentals of the Theory of Operator Algebras II  , 1983, ISBN 0-1239-3302-1  , Theorem 11.3.4 
 
 
literature  
 
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">