The vector gradient  is a mathematical operator  that, analogous to the gradient  of scalar quantities, describes the change in a vector-valued quantity as a function of location. The application of the vector gradient to a vector field  results in a second order tensor  at every location , so the result can be written as a matrix. 
The vector gradient is defined for Euclidean vector spaces  with a standard  scalar product  ( Frobenius scalar product  ). The generalization to standardized spaces is called the Fréchet derivation  .
 
definition  
A vector field is a mapping that assigns each location in a vector . Here and are each Euclidean vector spaces with the standard scalar product “·”. The vector gradient applied to the vector field is defined as
  
    
      
        
          
            
              F. 
              → 
             
           
         
        : 
        
          
            R. 
           
          
            n 
           
         
        → 
        
          
            R. 
           
          
            m 
           
         
       
     
    {\ displaystyle {\ vec {F}} \ colon \ mathbb {R} ^ {n} \ to \ mathbb {R} ^ {m}} 
   
 
  
    
      
        
          
            R. 
           
          
            n 
           
         
       
     
    {\ displaystyle \ mathbb {R} ^ {n}} 
   
 
  
    
      
        
          
            R. 
           
          
            m 
           
         
       
     
    {\ displaystyle \ mathbb {R} ^ {m}} 
   
 
  
    
      
        
          
            R. 
           
          
            n 
           
         
       
     
    {\ displaystyle \ mathbb {R} ^ {n}} 
   
 
  
    
      
        
          
            R. 
           
          
            m 
           
         
       
     
    {\ displaystyle \ mathbb {R} ^ {m}} 
   
 
  
    
      
        Degree 
       
     
    {\ displaystyle \ operatorname {grad}} 
   
 
  
    
      
        
          
            
              F. 
              → 
             
           
         
       
     
    {\ displaystyle {\ vec {F}}} 
   
 
  
    
      
        Degree 
         
        
          
            
              F. 
              → 
             
           
         
        = 
        ( 
        
          
            
              ∇ 
              → 
             
           
         
        ⊗ 
        
          
            
              F. 
              → 
             
           
         
        
          ) 
          
            ⊤ 
           
         
        = 
        ( 
        
          
            
              ∇ 
              → 
             
           
         
        
          
            
              F. 
              → 
             
           
         
        
          ) 
          
            ⊤ 
           
         
        ∈ 
        
          
            R. 
           
          
            m 
           
         
        ⊗ 
        
          
            R. 
           
          
            n 
           
         
       
     
    {\ displaystyle \ operatorname {grad} {\ vec {F}} = ({\ vec {\ nabla}} \ otimes {\ vec {F}}) ^ {\ top} = ({\ vec {\ nabla}} {\ vec {F}}) ^ {\ top} \ in \ mathbb {R} ^ {m} \ otimes \ mathbb {R} ^ {n}} 
   
  
It is the nabla operator  , and the link " " the  tensor  (  outer product  ). The superscript " " stands for the  transposition  and the space contains all tensors of the second level, the vectors from the linear map. The vector gradient is therefore the transposed dyadic product “ ” of the Nabla operator and a vector field.
  
    
      
        
          
            
              
                ∇ 
                → 
               
             
           
          = 
          
            ( 
            
              
                
                  ∂ 
                  
                    ∂ 
                    
                      x 
                      
                        1 
                       
                     
                   
                 
               
              , 
              ... 
              , 
              
                
                  ∂ 
                  
                    ∂ 
                    
                      x 
                      
                        n 
                       
                     
                   
                 
               
             
            ) 
           
         
       
     
    {\ displaystyle \ textstyle {\ vec {\ nabla}} = \ left ({\ frac {\ partial} {\ partial x_ {1}}}, \ ldots, {\ frac {\ partial} {\ partial x_ {n }}} \ right)} 
   
 
  
    
      
        ⊗ 
       
     
    {\ displaystyle \ otimes} 
   
 
  
    
      
        
          ⊤ 
         
       
     
    {\ displaystyle \ scriptstyle \ top} 
   
 
  
    
      
        
          
            R. 
           
          
            m 
           
         
        ⊗ 
        
          
            R. 
           
          
            n 
           
         
       
     
    {\ displaystyle \ mathbb {R} ^ {m} \ otimes \ mathbb {R} ^ {n}} 
   
 
  
    
      
        
          
            R. 
           
          
            n 
           
         
       
     
    {\ displaystyle \ mathbb {R} ^ {n}} 
   
 
  
    
      
        
          
            R. 
           
          
            m 
           
         
       
     
    {\ displaystyle \ mathbb {R} ^ {m}} 
   
 
  
    
      
        ⊗ 
       
     
    {\ displaystyle \ otimes} 
   
  
The directional derivative in the direction of a vector can be calculated with the vector gradient :
  
    
      
        
          
            
              H 
              → 
             
           
         
        ∈ 
        
          
            R. 
           
          
            n 
           
         
       
     
    {\ displaystyle {\ vec {h}} \ in \ mathbb {R} ^ {n}} 
   
 
  
    
      
        ( 
        
          
            
              H 
              → 
             
           
         
        ⋅ 
        
          
            
              ∇ 
              → 
             
           
         
        ) 
        
          
            
              F. 
              → 
             
           
         
        = 
        
          
            
              H 
              → 
             
           
         
        ⋅ 
        ( 
        
          
            
              ∇ 
              → 
             
           
         
        ⊗ 
        
          
            
              F. 
              → 
             
           
         
        ) 
        = 
        ( 
        
          
            
              ∇ 
              → 
             
           
         
        ⊗ 
        
          
            
              F. 
              → 
             
           
         
        
          ) 
          
            ⊤ 
           
         
        ⋅ 
        
          
            
              H 
              → 
             
           
         
        = 
        Degree 
         
        ( 
        
          
            
              F. 
              → 
             
           
         
        ) 
        ⋅ 
        
          
            
              H 
              → 
             
           
         
         
        . 
       
     
    {\ displaystyle ({\ vec {h}} \ cdot {\ vec {\ nabla}}) {\ vec {F}} = {\ vec {h}} \ cdot ({\ vec {\ nabla}} \ otimes {\ vec {F}}) = ({\ vec {\ nabla}} \ otimes {\ vec {F}}) ^ {\ top} \ cdot {\ vec {h}} = \ operatorname {grad} ({ \ vec {F}}) \ cdot {\ vec {h}} \ ,.} 
   
  
In fluid mechanics  , the left representation with the Nabla operator is preferred over the right, which is common in continuum mechanics  . The directional derivative calculated with the help of the vector gradient corresponds to the directional derivative obtained by calculating the limit value:
  
    
      
        ( 
        Degree 
         
        
          
            
              F. 
              → 
             
           
         
        ) 
        ⋅ 
        
          
            
              H 
              → 
             
           
         
        = 
        
          
             
            
              
                
                  
                    d 
                   
                  
                    
                      d 
                     
                    s 
                   
                 
               
              
                
                  
                    F. 
                    → 
                   
                 
               
              ( 
              
                
                  
                    x 
                    → 
                   
                 
               
              + 
              s 
              
                
                  
                    H 
                    → 
                   
                 
               
              ) 
             
            | 
           
          
            s 
            = 
            0 
           
         
        = 
        
          lim 
          
            s 
            → 
            0 
           
         
        
          
            
              
                
                  
                    F. 
                    → 
                   
                 
               
              ( 
              
                
                  
                    x 
                    → 
                   
                 
               
              + 
              s 
              
                
                  
                    H 
                    → 
                   
                 
               
              ) 
              - 
              
                
                  
                    F. 
                    → 
                   
                 
               
              ( 
              
                
                  
                    x 
                    → 
                   
                 
               
              ) 
             
            s 
           
         
         
        
          for all 
         
         
         
        
          
            
              x 
              → 
             
           
         
        , 
        
          
            
              H 
              → 
             
           
         
        ∈ 
        
          
            R. 
           
          
            n 
           
         
         
        . 
       
     
    {\ displaystyle (\ operatorname {grad} {\ vec {F}}) \ cdot {\ vec {h}} = \ left. {\ frac {\ mathrm {d}} {\ mathrm {d} s}} { \ vec {F}} ({\ vec {x}} + s {\ vec {h}}) \ right | _ {s = 0} = \ lim _ {s \ rightarrow 0} {\ frac {{\ vec {F}} ({\ vec {x}} + s {\ vec {h}}) - {\ vec {F}} ({\ vec {x}})} {s}} \ quad {\ text { for all}} \ quad \; {\ vec {x}}, {\ vec {h}} \ in \ mathbb {R} ^ {n} \ ,.} 
   
  
Be the component-wise representations
  
    
      
        
          
            
              x 
              → 
             
           
         
        = 
        
          ∑ 
          
            j 
            = 
            1 
           
          
            n 
           
         
        
          x 
          
            j 
           
         
        
          
            
              
                a 
                → 
               
             
           
          
            j 
           
         
         
        
          and 
         
         
        
          
            
              F. 
              → 
             
           
         
        ( 
        
          
            
              x 
              → 
             
           
         
        ) 
        = 
        
          ∑ 
          
            i 
            = 
            1 
           
          
            m 
           
         
        
          F. 
          
            i 
           
         
        ( 
        
          
            
              x 
              → 
             
           
         
        ) 
        
          
            
              
                b 
                → 
               
             
           
          
            i 
           
         
       
     
    {\ displaystyle {\ vec {x}} = \ sum _ {j = 1} ^ {n} x_ {j} {\ vec {a}} _ {j} \ quad {\ text {and}} \ quad { \ vec {F}} ({\ vec {x}}) = \ sum _ {i = 1} ^ {m} F_ {i} ({\ vec {x}}) {\ vec {b}} _ { i}} 
   
  
given with respect to a fixed orthonormal basis   des and des . Then the gradient is calculated according to
  
    
      
        { 
        
          
            
              
                a 
                → 
               
             
           
          
            j 
           
         
        } 
       
     
    {\ displaystyle \ {{\ vec {a}} _ {j} \}} 
   
 
  
    
      
        
          
            R. 
           
          
            n 
           
         
       
     
    {\ displaystyle \ mathbb {R} ^ {n}} 
   
 
  
    
      
        { 
        
          
            
              
                b 
                → 
               
             
           
          
            i 
           
         
        } 
       
     
    {\ displaystyle \ {{\ vec {b}} _ {i} \}} 
   
 
  
    
      
        
          
            R. 
           
          
            m 
           
         
       
     
    {\ displaystyle \ mathbb {R} ^ {m}} 
   
 
  
    
      
        Degree 
         
        
          
            
              F. 
              → 
             
           
         
        = 
        
          ∑ 
          
            j 
            = 
            1 
           
          
            n 
           
         
        
          
            
              
                d 
               
              
                
                  
                    F. 
                    → 
                   
                 
               
             
            
              
                d 
               
              
                x 
                
                  j 
                 
               
             
           
         
        ⊗ 
        
          
            
              
                a 
                → 
               
             
           
          
            j 
           
         
        = 
        
          ∑ 
          
            i 
            = 
            1 
           
          
            m 
           
         
        
          ∑ 
          
            j 
            = 
            1 
           
          
            n 
           
         
        
          
            
              
                d 
               
              
                F. 
                
                  i 
                 
               
             
            
              
                d 
               
              
                x 
                
                  j 
                 
               
             
           
         
        
          
            
              
                b 
                → 
               
             
           
          
            i 
           
         
        ⊗ 
        
          
            
              
                a 
                → 
               
             
           
          
            j 
           
         
       
     
    {\ displaystyle \ operatorname {grad} {\ vec {F}} = \ sum _ {j = 1} ^ {n} {\ frac {\ mathrm {d} {\ vec {F}}} {\ mathrm {d } x_ {j}}} \ otimes {\ vec {a}} _ {j} = \ sum _ {i = 1} ^ {m} \ sum _ {j = 1} ^ {n} {\ frac {\ mathrm {d} F_ {i}} {\ mathrm {d} x_ {j}}} {\ vec {b}} _ {i} \ otimes {\ vec {a}} _ {j}} 
   
  
The components of this tensor agree with those of the Jacobi matrix  :
  
    
      
        
          
            
              
                b 
                → 
               
             
           
          
            k 
           
         
        ⋅ 
        ( 
        Degree 
         
        
          
            
              F. 
              → 
             
           
         
        ) 
        ⋅ 
        
          
            
              
                a 
                → 
               
             
           
          
            l 
           
         
        = 
        
          
            
              ∂ 
              
                F. 
                
                  k 
                 
               
             
            
              ∂ 
              
                x 
                
                  l 
                 
               
             
           
         
        = 
        ( 
        
          J 
          
            
              
                F. 
                → 
               
             
           
         
        
          ) 
          
            k 
            l 
           
         
         
        . 
       
     
    {\ displaystyle {\ vec {b}} _ {k} \ cdot (\ operatorname {grad} {\ vec {F}}) \ cdot {\ vec {a}} _ {l} = {\ frac {\ partial F_ {k}} {\ partial x_ {l}}} = (J _ {\ vec {F}}) _ {kl} \ ,.} 
   
  
The vector gradient is u. a. used in continuum mechanics  (e.g. in the Navier-Stokes equations  ).
Occasionally, it is also defined in the literature .
  
    
      
        Degree 
         
        
          
            
              F. 
              → 
             
           
         
        : = 
        
          
            
              ∇ 
              → 
             
           
         
        ⊗ 
        
          
            
              F. 
              → 
             
           
         
       
     
    {\ displaystyle \ operatorname {grad} {\ vec {F}}: = {\ vec {\ nabla}} \ otimes {\ vec {F}}} 
   
 
Total differential  
Consider an infinitesimal displacement for a vector field:
  
    
      
        
          
            
              F. 
              → 
             
           
         
        ( 
        
          
            
              r 
              → 
             
           
         
        + 
        
          d 
         
        
          
            
              r 
              → 
             
           
         
        ) 
        = 
        
          
            
              F. 
              → 
             
           
         
        ( 
        
          
            
              r 
              → 
             
           
         
        ) 
        + 
        
          J 
          
            
              
                F. 
                → 
               
             
           
         
        ⋅ 
        
          d 
         
        
          
            
              r 
              → 
             
           
         
        = 
        
          
            
              F. 
              → 
             
           
         
        ( 
        
          
            
              r 
              → 
             
           
         
        ) 
        + 
        ( 
        Degree 
         
        
          
            
              F. 
              → 
             
           
         
        ) 
        ⋅ 
        
          d 
         
        
          
            
              r 
              → 
             
           
         
        = 
        
          
            
              F. 
              → 
             
           
         
        ( 
        
          
            
              r 
              → 
             
           
         
        ) 
        + 
        ( 
        
          d 
         
        
          
            
              r 
              → 
             
           
         
        ⋅ 
        ∇ 
        ) 
        
          
            
              F. 
              → 
             
           
         
        = 
        
          
            
              F. 
              → 
             
           
         
        ( 
        
          
            
              r 
              → 
             
           
         
        ) 
        + 
        
          d 
         
        
          
            
              F. 
              → 
             
           
         
       
     
    {\ displaystyle {\ vec {F}} ({\ vec {r}} + \ mathrm {d} {\ vec {r}}) = {\ vec {F}} ({\ vec {r}}) + J _ {\ vec {F}} \ cdot \ mathrm {d} {\ vec {r}} = {\ vec {F}} ({\ vec {r}}) + (\ operatorname {grad} {\ vec { F}}) \ cdot \ mathrm {d} {\ vec {r}} = {\ vec {F}} ({\ vec {r}}) + (\ mathrm {d} {\ vec {r}} \ cdot \ nabla) {\ vec {F}} = {\ vec {F}} ({\ vec {r}}) + \ mathrm {d} {\ vec {F}}} 
   
  
The complete or total differential of  a vector field is:
  
    
      
        
          
            
              F. 
              → 
             
           
         
        ( 
        
          
            
              r 
              → 
             
           
         
        ) 
       
     
    {\ displaystyle {\ vec {F}} ({\ vec {r}})} 
   
 
  
    
      
        
          d 
         
        
          
            
              F. 
              → 
             
           
         
        = 
        ( 
        Degree 
         
        
          
            
              F. 
              → 
             
           
         
        ) 
        ⋅ 
        
          d 
         
        
          
            
              r 
              → 
             
           
         
       
     
    {\ displaystyle \ mathrm {d} {\ vec {F}} = (\ operatorname {grad} {\ vec {F}}) \ cdot \ mathrm {d} {\ vec {r}}} 
   
     or in index notation   
  
    
      
        
          d 
         
        
          F. 
          
            i 
           
         
        = 
        
          ∑ 
          
            j 
           
         
        
          
            
              ∂ 
              
                F. 
                
                  i 
                 
               
             
            
              ∂ 
              
                x 
                
                  j 
                 
               
             
           
         
        
          d 
         
        
          x 
          
            j 
           
         
       
     
    {\ displaystyle \ mathrm {d} F_ {i} = \ sum _ {j} {\ frac {\ partial F_ {i}} {\ partial x_ {j}}} \ mathrm {d} x_ {j}} 
   
  
  
The total differential of a scalar field and a vector field thus (formally) have the same form. For the total differential of a scalar field, the gradient is multiplied by the scalar differential. In the case of the total differential of a vector field, the multiplication between the gradient (matrix form) and the differential vector must be  carried out as a matrix-vector product  .
 
properties  
The calculation rules are those of the Jacobi matrix. denotes the vector gradient here.
  
    
      
        Degree 
         
        
          
            
              A. 
              → 
             
           
         
       
     
    {\ displaystyle \ operatorname {grad} {\ vec {A}}} 
   
 
The following applies to all constants and vector fields :
  
    
      
        c 
        ∈ 
        
          R. 
         
       
     
    {\ displaystyle c \ in \ mathbb {R}} 
   
 
  
    
      
        
          
            
              A. 
              → 
             
           
         
        , 
         
        
          
            
              B. 
              → 
             
           
         
        : 
        
          
            R. 
           
          
            n 
           
         
        → 
        
          
            R. 
           
          
            m 
           
         
       
     
    {\ displaystyle {\ vec {A}}, \, {\ vec {B}} \ colon \ mathbb {R} ^ {n} \ rightarrow \ mathbb {R} ^ {m}} 
   
 
Linearity 
  
    
      
        Degree 
         
        ( 
        c 
        ⋅ 
        
          
            
              A. 
              → 
             
           
         
        ) 
        = 
        c 
        ⋅ 
        Degree 
         
        
          
            
              A. 
              → 
             
           
         
       
     
    {\ displaystyle \ operatorname {grad} (c \ cdot {\ vec {A}}) = c \ cdot \ operatorname {grad} {\ vec {A}}} 
   
  
  
    
      
        Degree 
         
        ( 
        
          
            
              A. 
              → 
             
           
         
        + 
        
          
            
              B. 
              → 
             
           
         
        ) 
        = 
        Degree 
         
        
          
            
              A. 
              → 
             
           
         
        + 
        Degree 
         
        
          
            
              B. 
              → 
             
           
         
       
     
    {\ displaystyle \ operatorname {degree} ({\ vec {A}} + {\ vec {B}}) = \ operatorname {degree} {\ vec {A}} + \ operatorname {degree} {\ vec {B} }} 
   
  
Product rule 
  
    
      
        ( 
        
          
            
              A. 
              → 
             
           
         
        ⋅ 
        ∇ 
        ) 
        
          
            
              B. 
              → 
             
           
         
        = 
        ( 
        Degree 
         
        
          
            
              B. 
              → 
             
           
         
        ) 
        ⋅ 
        
          
            
              A. 
              → 
             
           
         
       
     
    {\ displaystyle ({\ vec {A}} \ cdot \ nabla) {\ vec {B}} = (\ operatorname {grad} {\ vec {B}}) \ cdot {\ vec {A}}} 
   
  
  
    
      
        Degree 
         
        ( 
        
          
            
              A. 
              → 
             
           
         
        ⋅ 
        
          
            
              B. 
              → 
             
           
         
        ) 
        = 
        ( 
        Degree 
         
        
          
            
              A. 
              → 
             
           
         
        
          ) 
          
            T 
           
         
        ⋅ 
        
          
            
              B. 
              → 
             
           
         
        + 
        ( 
        Degree 
         
        
          
            
              B. 
              → 
             
           
         
        
          ) 
          
            T 
           
         
        ⋅ 
        
          
            
              A. 
              → 
             
           
         
       
     
    {\ displaystyle \ operatorname {grad} ({\ vec {A}} \ cdot {\ vec {B}}) = (\ operatorname {grad} {\ vec {A}}) ^ {T} \ cdot {\ vec {B}} + (\ operatorname {grad} {\ vec {B}}) ^ {T} \ cdot {\ vec {A}}} 
   
  
  
    
      
        Degree 
         
        ( 
        
          
            
              
                A. 
                → 
               
             
           
          
             
            2 
           
         
        ) 
        = 
        2 
         
        ( 
        Degree 
         
        
          
            
              A. 
              → 
             
           
         
        
          ) 
          
            T 
           
         
        ⋅ 
        
          
            
              A. 
              → 
             
           
         
       
     
    {\ displaystyle \ operatorname {grad} ({\ vec {A}} ^ {\, 2}) = 2 \, (\ operatorname {grad} {\ vec {A}}) ^ {T} \ cdot {\ vec {A}}} 
   
  
The above relationship can be transformed especially for vector fields :
  
    
      
        
          
            
              A. 
              → 
             
           
         
        , 
         
        
          
            
              B. 
              → 
             
           
         
        : 
        
          
            R. 
           
          
            3 
           
         
        → 
        
          
            R. 
           
          
            3 
           
         
       
     
    {\ displaystyle {\ vec {A}}, \, {\ vec {B}}: \ mathbb {R} ^ {3} \ rightarrow \ mathbb {R} ^ {3}} 
   
 
  
    
      
        Degree 
         
        ( 
        
          
            
              A. 
              → 
             
           
         
        ⋅ 
        
          
            
              B. 
              → 
             
           
         
        ) 
        = 
        ( 
        
          
            
              B. 
              → 
             
           
         
        ⋅ 
        ∇ 
        ) 
        
          
            
              A. 
              → 
             
           
         
        + 
        
          
            
              B. 
              → 
             
           
         
        × 
        ( 
        ∇ 
        × 
        
          
            
              A. 
              → 
             
           
         
        ) 
        + 
        ( 
        
          
            
              A. 
              → 
             
           
         
        ⋅ 
        ∇ 
        ) 
        
          
            
              B. 
              → 
             
           
         
        + 
        
          
            
              A. 
              → 
             
           
         
        × 
        ( 
        ∇ 
        × 
        
          
            
              B. 
              → 
             
           
         
        ) 
       
     
    {\ displaystyle \ operatorname {grad} ({\ vec {A}} \ cdot {\ vec {B}}) = ({\ vec {B}} \ cdot \ nabla) {\ vec {A}} + {\ vec {B}} \ times (\ nabla \ times {\ vec {A}}) + ({\ vec {A}} \ cdot \ nabla) {\ vec {B}} + {\ vec {A}} \ times (\ nabla \ times {\ vec {B}})} 
   
  
  
    
      
        Degree 
         
        ( 
        
          
            
              
                A. 
                → 
               
             
           
          
             
            2 
           
         
        ) 
        = 
        2 
        ( 
        
          
            
              A. 
              → 
             
           
         
        ⋅ 
        ∇ 
        ) 
        
          
            
              A. 
              → 
             
           
         
        + 
        2 
        
          
            
              A. 
              → 
             
           
         
        × 
        ( 
        ∇ 
        × 
        
          
            
              A. 
              → 
             
           
         
        ) 
       
     
    {\ displaystyle \ operatorname {grad} ({\ vec {A}} ^ {\, 2}) = 2 ({\ vec {A}} \ cdot \ nabla) {\ vec {A}} + 2 {\ vec {A}} \ times (\ nabla \ times {\ vec {A}})} 
   
  
Examples  
  
    
      
        Degree 
         
        
          
            
              r 
              → 
             
           
         
        = 
        I. 
        , 
       
     
    {\ displaystyle \ operatorname {grad} {\ vec {r}} = I,} 
   
  where is the identity matrix  .
  
    
      
        I. 
       
     
    {\ displaystyle I} 
   
   
  
    
      
        
          
            ( 
            
              Degree 
               
              
                
                  
                    
                      r 
                      → 
                     
                   
                  
                    r 
                    
                      3 
                     
                   
                 
               
             
            ) 
           
          
            T 
           
         
        = 
        ∇ 
        ⊗ 
        
          
            
              
                r 
                → 
               
             
            
              r 
              
                3 
               
             
           
         
        = 
        
          ( 
          
            ∇ 
            
              
                1 
                
                  r 
                  
                    3 
                   
                 
               
             
           
          ) 
         
        ⊗ 
        
          
            
              r 
              → 
             
           
         
        + 
        
          
            1 
            
              r 
              
                3 
               
             
           
         
        ( 
        ∇ 
        ⊗ 
        
          
            
              r 
              → 
             
           
         
        ) 
        = 
        - 
        
          
            3 
            
              r 
              
                5 
               
             
           
         
        
          
            
              r 
              → 
             
           
         
        ⊗ 
        
          
            
              r 
              → 
             
           
         
        + 
        
          
            1 
            
              r 
              
                3 
               
             
           
         
        I. 
        = 
        - 
        
          
            1 
            
              r 
              
                5 
               
             
           
         
        ( 
        3 
        
          
            
              r 
              → 
             
           
         
        ⊗ 
        
          
            
              r 
              → 
             
           
         
        - 
        
          r 
          
            2 
           
         
        I. 
        ) 
       
     
    {\ displaystyle \ left (\ operatorname {grad} {\ frac {\ vec {r}} {r ^ {3}}} \ right) ^ {T} = \ nabla \ otimes {\ frac {\ vec {r} } {r ^ {3}}} = \ left (\ nabla {\ frac {1} {r ^ {3}}} \ right) \ otimes {\ vec {r}} + {\ frac {1} {r ^ {3}}} (\ nabla \ otimes {\ vec {r}}) = - {\ frac {3} {r ^ {5}}} {\ vec {r}} \ otimes {\ vec {r} } + {\ frac {1} {r ^ {3}}} I = - {\ frac {1} {r ^ {5}}} (3 {\ vec {r}} \ otimes {\ vec {r} } -r ^ {2} I)} 
   
  
 
The last two formulas are e.g. B. used in Cartesian multipole expansion  .
literature  
Hugo Sirk: Introduction to vector calculation: For natural scientists, chemists and engineers  . Springer-Verlag, 2013, ISBN 3-642-72313-6  , chap. 5.4 "The vector field and the vector gradient".  
  
 
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">