(40,13,4) block plan

from Wikipedia, the free encyclopedia

The (40,13,4) block diagram is a special symmetrical block diagram . In order to be able to construct it, this combinatorial problem had to be solved: an empty 40 × 40 matrix was filled with ones in such a way that each row of the matrix contains exactly 13 ones and any two rows have exactly 4 ones in the same column (not more and not less). That sounds relatively simple, but it is not trivial to solve. There are only certain combinations of parameters (like here v = 40, k = 13, λ = 4) for which such a construction is feasible. The smallest of these (v, k, λ) are listed in this overview .

properties

This symmetrical block diagram has the parameters v = 40, k = 13, λ = 4 and thus the following properties:

  • It consists of 40 blocks and 40 points.
  • Each block contains exactly 13 points.
  • Every 2 blocks intersect in exactly 4 points.
  • Each point lies on exactly 13 blocks.
  • Each 2 points are connected by exactly 4 blocks.

Existence and characterization

There are at least 1108800 non-isomorphic 2- (40,13,4) block plans. Two of these solutions are:

List of blocks

All the blocks of this block plan are listed here; See this illustration to understand this list

  • Solution 1
  1   2   3   5   6   9  14  15  18  20  25  27  35
  2   3   4   6   7  10  15  16  19  21  26  28  36
  3   4   5   7   8  11  16  17  20  22  27  29  37
  4   5   6   8   9  12  17  18  21  23  28  30  38
  5   6   7   9  10  13  18  19  22  24  29  31  39
  6   7   8  10  11  14  19  20  23  25  30  32  40
  1   7   8   9  11  12  15  20  21  24  26  31  33
  2   8   9  10  12  13  16  21  22  25  27  32  34
  3   9  10  11  13  14  17  22  23  26  28  33  35
  4  10  11  12  14  15  18  23  24  27  29  34  36
  5  11  12  13  15  16  19  24  25  28  30  35  37
  6  12  13  14  16  17  20  25  26  29  31  36  38
  7  13  14  15  17  18  21  26  27  30  32  37  39
  8  14  15  16  18  19  22  27  28  31  33  38  40
  1   9  15  16  17  19  20  23  28  29  32  34  39
  2  10  16  17  18  20  21  24  29  30  33  35  40
  1   3  11  17  18  19  21  22  25  30  31  34  36
  2   4  12  18  19  20  22  23  26  31  32  35  37
  3   5  13  19  20  21  23  24  27  32  33  36  38
  4   6  14  20  21  22  24  25  28  33  34  37  39
  5   7  15  21  22  23  25  26  29  34  35  38  40
  1   6   8  16  22  23  24  26  27  30  35  36  39
  2   7   9  17  23  24  25  27  28  31  36  37  40
  1   3   8  10  18  24  25  26  28  29  32  37  38
  2   4   9  11  19  25  26  27  29  30  33  38  39
  3   5  10  12  20  26  27  28  30  31  34  39  40
  1   4   6  11  13  21  27  28  29  31  32  35  40
  1   2   5   7  12  14  22  28  29  30  32  33  36
  2   3   6   8  13  15  23  29  30  31  33  34  37
  3   4   7   9  14  16  24  30  31  32  34  35  38
  4   5   8  10  15  17  25  31  32  33  35  36  39
  5   6   9  11  16  18  26  32  33  34  36  37  40
  1   6   7  10  12  17  19  27  33  34  35  37  38
  2   7   8  11  13  18  20  28  34  35  36  38  39
  3   8   9  12  14  19  21  29  35  36  37  39  40
  1   4   9  10  13  15  20  22  30  36  37  38  40
  1   2   5  10  11  14  16  21  23  31  37  38  39
  2   3   6  11  12  15  17  22  24  32  38  39  40
  1   3   4   7  12  13  16  18  23  25  33  39  40
  1   2   4   5   8  13  14  17  19  24  26  34  40
  • Solution 2
  1   2   3   4   5   6   7   8   9  10  11  12  13
  1   2   3   4  14  15  16  17  18  19  20  21  22
  1   2   3   4  23  24  25  26  27  28  29  30  31
  1   2   3   4  32  33  34  35  36  37  38  39  40
  1   5   6   7  14  15  16  23  24  25  32  33  34
  1   5   6   7  17  18  19  26  27  28  35  36  37
  1   5   6   7  20  21  22  29  30  31  38  39  40
  1   8   9  10  14  15  16  26  27  28  38  39  40
  1   8   9  10  17  18  19  29  30  31  32  33  34
  1   8   9  10  20  21  22  23  24  25  35  36  37
  1  11  12  13  14  15  16  29  30  31  35  36  37
  1  11  12  13  17  18  19  23  24  25  38  39  40
  1  11  12  13  20  21  22  26  27  28  32  33  34
  2   5   8  11  14  17  20  23  26  29  32  35  38
  2   5   8  11  15  18  21  24  27  30  33  36  39
  2   5   8  11  16  19  22  25  28  31  34  37  40
  2   6   9  12  14  17  20  24  27  30  34  37  40
  2   6   9  12  15  18  21  25  28  31  32  35  38
  2   6   9  12  16  19  22  23  26  29  33  36  39
  2   7  10  13  14  17  20  25  28  31  33  36  39
  2   7  10  13  15  18  21  23  26  29  34  37  40
  2   7  10  13  16  19  22  24  27  30  32  35  38
  3   5  10  12  14  19  21  25  27  29  32  37  39
  3   5  10  12  15  17  22  24  26  31  33  35  40
  3   5  10  12  16  18  20  23  28  30  34  36  38
  3   6   8  13  14  19  21  23  28  30  33  35  40
  3   6   8  13  15  17  22  25  27  29  34  36  38
  3   6   8  13  16  18  20  24  26  31  32  37  39
  3   7   9  11  14  19  21  24  26  31  34  36  38
  3   7   9  11  15  17  22  23  28  30  32  37  39
  3   7   9  11  16  18  20  25  27  29  33  35  40
  4   5   9  13  14  18  22  23  27  31  33  37  38
  4   5   9  13  15  19  20  24  28  29  34  35  39
  4   5   9  13  16  17  21  25  26  30  32  36  40
  4   6  10  11  14  18  22  25  26  30  34  35  39
  4   6  10  11  15  19  20  23  27  31  32  36  40
  4   6  10  11  16  17  21  24  28  29  33  37  38
  4   7   8  12  14  18  22  24  28  29  32  36  40
  4   7   8  12  15  19  20  25  26  30  33  37  38
  4   7   8  12  16  17  21  23  27  31  34  35  39

Incidence matrix

This is a representation of the incidence matrix of this block diagram; see this illustration to understand this matrix

  • Solution 1
O O O . O O . . O . . . . O O . . O . O . . . . O . O . . . . . . . O . . . . .
. O O O . O O . . O . . . . O O . . O . O . . . . O . O . . . . . . . O . . . .
. . O O O . O O . . O . . . . O O . . O . O . . . . O . O . . . . . . . O . . .
. . . O O O . O O . . O . . . . O O . . O . O . . . . O . O . . . . . . . O . .
. . . . O O O . O O . . O . . . . O O . . O . O . . . . O . O . . . . . . . O .
. . . . . O O O . O O . . O . . . . O O . . O . O . . . . O . O . . . . . . . O
O . . . . . O O O . O O . . O . . . . O O . . O . O . . . . O . O . . . . . . .
. O . . . . . O O O . O O . . O . . . . O O . . O . O . . . . O . O . . . . . .
. . O . . . . . O O O . O O . . O . . . . O O . . O . O . . . . O . O . . . . .
. . . O . . . . . O O O . O O . . O . . . . O O . . O . O . . . . O . O . . . .
. . . . O . . . . . O O O . O O . . O . . . . O O . . O . O . . . . O . O . . .
. . . . . O . . . . . O O O . O O . . O . . . . O O . . O . O . . . . O . O . .
. . . . . . O . . . . . O O O . O O . . O . . . . O O . . O . O . . . . O . O .
. . . . . . . O . . . . . O O O . O O . . O . . . . O O . . O . O . . . . O . O
O . . . . . . . O . . . . . O O O . O O . . O . . . . O O . . O . O . . . . O .
. O . . . . . . . O . . . . . O O O . O O . . O . . . . O O . . O . O . . . . O
O . O . . . . . . . O . . . . . O O O . O O . . O . . . . O O . . O . O . . . .
. O . O . . . . . . . O . . . . . O O O . O O . . O . . . . O O . . O . O . . .
. . O . O . . . . . . . O . . . . . O O O . O O . . O . . . . O O . . O . O . .
. . . O . O . . . . . . . O . . . . . O O O . O O . . O . . . . O O . . O . O .
. . . . O . O . . . . . . . O . . . . . O O O . O O . . O . . . . O O . . O . O
O . . . . O . O . . . . . . . O . . . . . O O O . O O . . O . . . . O O . . O .
. O . . . . O . O . . . . . . . O . . . . . O O O . O O . . O . . . . O O . . O
O . O . . . . O . O . . . . . . . O . . . . . O O O . O O . . O . . . . O O . .
. O . O . . . . O . O . . . . . . . O . . . . . O O O . O O . . O . . . . O O .
. . O . O . . . . O . O . . . . . . . O . . . . . O O O . O O . . O . . . . O O
O . . O . O . . . . O . O . . . . . . . O . . . . . O O O . O O . . O . . . . O
O O . . O . O . . . . O . O . . . . . . . O . . . . . O O O . O O . . O . . . .
. O O . . O . O . . . . O . O . . . . . . . O . . . . . O O O . O O . . O . . .
. . O O . . O . O . . . . O . O . . . . . . . O . . . . . O O O . O O . . O . .
. . . O O . . O . O . . . . O . O . . . . . . . O . . . . . O O O . O O . . O .
. . . . O O . . O . O . . . . O . O . . . . . . . O . . . . . O O O . O O . . O
O . . . . O O . . O . O . . . . O . O . . . . . . . O . . . . . O O O . O O . .
. O . . . . O O . . O . O . . . . O . O . . . . . . . O . . . . . O O O . O O .
. . O . . . . O O . . O . O . . . . O . O . . . . . . . O . . . . . O O O . O O
O . . O . . . . O O . . O . O . . . . O . O . . . . . . . O . . . . . O O O . O
O O . . O . . . . O O . . O . O . . . . O . O . . . . . . . O . . . . . O O O .
. O O . . O . . . . O O . . O . O . . . . O . O . . . . . . . O . . . . . O O O
O . O O . . O . . . . O O . . O . O . . . . O . O . . . . . . . O . . . . . O O
O O . O O . . O . . . . O O . . O . O . . . . O . O . . . . . . . O . . . . . O
  • Solution 2
O O O O O O O O O O O O O . . . . . . . . . . . . . . . . . . . . . . . . . . .
O O O O . . . . . . . . . O O O O O O O O O . . . . . . . . . . . . . . . . . .
O O O O . . . . . . . . . . . . . . . . . . O O O O O O O O O . . . . . . . . .
O O O O . . . . . . . . . . . . . . . . . . . . . . . . . . . O O O O O O O O O
O . . . O O O . . . . . . O O O . . . . . . O O O . . . . . . O O O . . . . . .
O . . . O O O . . . . . . . . . O O O . . . . . . O O O . . . . . . O O O . . .
O . . . O O O . . . . . . . . . . . . O O O . . . . . . O O O . . . . . . O O O
O . . . . . . O O O . . . O O O . . . . . . . . . O O O . . . . . . . . . O O O
O . . . . . . O O O . . . . . . O O O . . . . . . . . . O O O O O O . . . . . .
O . . . . . . O O O . . . . . . . . . O O O O O O . . . . . . . . . O O O . . .
O . . . . . . . . . O O O O O O . . . . . . . . . . . . O O O . . . O O O . . .
O . . . . . . . . . O O O . . . O O O . . . O O O . . . . . . . . . . . . O O O
O . . . . . . . . . O O O . . . . . . O O O . . . O O O . . . O O O . . . . . .
. O . . O . . O . . O . . O . . O . . O . . O . . O . . O . . O . . O . . O . .
. O . . O . . O . . O . . . O . . O . . O . . O . . O . . O . . O . . O . . O .
. O . . O . . O . . O . . . . O . . O . . O . . O . . O . . O . . O . . O . . O
. O . . . O . . O . . O . O . . O . . O . . . O . . O . . O . . . O . . O . . O
. O . . . O . . O . . O . . O . . O . . O . . . O . . O . . O O . . O . . O . .
. O . . . O . . O . . O . . . O . . O . . O O . . O . . O . . . O . . O . . O .
. O . . . . O . . O . . O O . . O . . O . . . . O . . O . . O . O . . O . . O .
. O . . . . O . . O . . O . O . . O . . O . O . . O . . O . . . . O . . O . . O
. O . . . . O . . O . . O . . O . . O . . O . O . . O . . O . O . . O . . O . .
. . O . O . . . . O . O . O . . . . O . O . . . O . O . O . . O . . . . O . O .
. . O . O . . . . O . O . . O . O . . . . O . O . O . . . . O . O . O . . . . O
. . O . O . . . . O . O . . . O . O . O . . O . . . . O . O . . . O . O . O . .
. . O . . O . O . . . . O O . . . . O . O . O . . . . O . O . . O . O . . . . O
. . O . . O . O . . . . O . O . O . . . . O . . O . O . O . . . . O . O . O . .
. . O . . O . O . . . . O . . O . O . O . . . O . O . . . . O O . . . . O . O .
. . O . . . O . O . O . . O . . . . O . O . . O . O . . . . O . . O . O . O . .
. . O . . . O . O . O . . . O . O . . . . O O . . . . O . O . O . . . . O . O .
. . O . . . O . O . O . . . . O . O . O . . . . O . O . O . . . O . O . . . . O
. . . O O . . . O . . . O O . . . O . . . O O . . . O . . . O . O . . . O O . .
. . . O O . . . O . . . O . O . . . O O . . . O . . . O O . . . . O O . . . O .
. . . O O . . . O . . . O . . O O . . . O . . . O O . . . O . O . . . O . . . O
. . . O . O . . . O O . . O . . . O . . . O . . O O . . . O . . . O O . . . O .
. . . O . O . . . O O . . . O . . . O O . . O . . . O . . . O O . . . O . . . O
. . . O . O . . . O O . . . . O O . . . O . . O . . . O O . . . O . . . O O . .
. . . O . . O O . . . O . O . . . O . . . O . O . . . O O . . O . . . O . . . O
. . . O . . O O . . . O . . O . . . O O . . . . O O . . . O . . O . . . O O . .
. . . O . . O O . . . O . . . O O . . . O . O . . . O . . . O . . O O . . . O .

Cyclical representation

There is a cyclical representation ( Singer cycle ) for solution 1 of this block diagram, it is isomorphic to the above list of blocks. Starting from the block shown, the remaining blocks of the block plan are obtained by cyclic permutation of the points it contains.

  • Solution 1
  1   2   3   5   6   9  14  15  18  20  25  27  35

oval

An oval of the block plan is a set of its points, no three of which are on a block. Here is an example of a maximum order oval for each solution to this block diagram:

  • Solution 1
  1   2
  • Solution 2
  5  14  28

literature

Individual evidence

  1. ^ Rudolf Mathon, Alexander Rosa : 2- (ν, κ, λ) Designs of Small Order. In: Charles J. Colbourn , Jeffrey H. Dinitz (Eds.): Handbook of Combinatorial Designs. 2nd edition. Chapman and Hall / CRC, Boca Raton FL et al. 2007, ISBN 978-1-4200-1054-1 , pp. 25-57.