Physical key figure
Surname
Archimedes number
Formula symbol
A.
r
{\ displaystyle {\ mathit {Ar}}}
dimension
dimensionless
definition
A.
r
=
Δ
ρ
G
L.
3
ρ
ν
2
{\ displaystyle {\ mathit {Ar}} = {\ frac {\ Delta \ rho gL ^ {3}} {\ rho \ nu ^ {2}}}}
Named after
Archimedes
scope of application
Buoyancy of bodies
The Archimedes number ( symbol :) is a dimensionless number , named after the ancient scholar Archimedes . It can be interpreted as the ratio of lift force to friction force and is defined as
A.
r
{\ displaystyle {\ mathit {Ar}}}
A.
r
=
Δ
ρ
G
L.
3
ρ
ν
2
=
(
1
-
ρ
K
ρ
)
⋅
G
L.
3
ν
2
=
ρ
Δ
ρ
G
L.
3
η
2
{\ displaystyle {\ begin {aligned} {\ mathit {Ar}} & = {\ frac {\ Delta \ rho \, g \, L ^ {3}} {\ rho \, \ nu ^ {2}}} = \ left (1 - {\ frac {\ rho _ {\ mathrm {K}}} {\ rho}} \ right) \ cdot {\ frac {g \, L ^ {3}} {\ nu ^ {2 }}} \\ & = {\ frac {\ rho \, \ Delta \ rho \, g \, L ^ {3}} {\ eta ^ {2}}} \ end {aligned}}}
.
The incoming sizes are
the difference between the density of the body and the density of the fluid
Δ
ρ
=
ρ
K
-
ρ
{\ displaystyle \ Delta \ rho = \ rho _ {\ mathrm {K}} - \ rho}
ρ
K
{\ displaystyle \ rho _ {\ mathrm {K}}}
ρ
{\ displaystyle \ rho}
the acceleration of gravity , on earth
G
≈
9
,
81
m
s
2
{\ displaystyle g \ approx 9 {,} 81 \, \ mathrm {\ frac {m} {s ^ {2}}}}
the volume calculated from the characteristic length of the body
L.
{\ displaystyle L}
L.
3
{\ displaystyle L ^ {3}}
the kinematic viscosity of the fluid , which differs from the dynamic viscosity by the factor .
ν
{\ displaystyle \ nu}
η
=
ρ
⋅
ν
{\ displaystyle \ eta = \ rho \ cdot \ nu}
ρ
{\ displaystyle \ rho}
Other definition
An alternative definition of the Archimedes number, which can be interpreted as the ratio of buoyancy force to inertia force or between free and forced convection , is identical to the definition of the Richardson number and reads:
A.
r
=
Δ
T
G
L.
β
u
∞
2
=
G
r
R.
e
2
{\ displaystyle {\ mathit {Ar}} = {\ frac {\ Delta T \, g \, L \, \ beta} {{u _ {\ infty}} ^ {2}}} = {\ frac {\ mathit {Gr}} {{\ mathit {Re}} ^ {2}}}}
.
It is
β
{\ displaystyle \ beta}
the isobaric expansion coefficient
Δ
T
=
T
∞
-
T
wall
{\ displaystyle \ Delta T = T _ {\ infty} -T _ {\ text {wall}}}
the driving temperature difference
u
∞
{\ displaystyle u _ {\ infty}}
the ambient speed
G
r
{\ displaystyle {\ mathit {Gr}}}
: Grass yard number
R.
e
{\ displaystyle {\ mathit {Re}}}
: Reynolds number .
Individual evidence
↑ Repetition of technical thermodynamics : Achim Dittmann, Teubner study books, mechanical engineering ISBN 3-519-06354-9
↑ Hanel, Bernd M., Raumlufströmung, Müller Verlag Heidelberg, 1994 pp. 31 + 72
↑ VDI 6019 sheet 1, Beuth Verlag Berlin, 2006 p. 37 ff
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">