The charge conjugation  or C- parity   (for English C  harge = charge  ) replaces each particle  with its  antiparticle  in quantum mechanical states  . It reflects the  sign of  the  charge  and leaves the  mass  ,  momentum  ,  energy  and  spin of  each particle unchanged.
 
The electromagnetic  and the strong interaction  are invariant  under charge conjugation (C-invariant for short), i.e. In other words , in the event of scattering  or decay, the charge-mirrored states behave like the original states. weak interaction   not  C-invariant ( parity violation  ): The proportion of the electron  , which in weak interactions in an electron neutrino  and a - Boson  can pass, is in charge conjugation through the part of  the positron  replaced, which can not take the bosons couples.
  
    
      
        
          W. 
          
            - 
           
         
       
     
    {\ displaystyle W ^ {-}} 
   
 
  
    
      
        W. 
       
     
    {\ displaystyle W} 
   
  
Charge conjugation of the Dirac field In the case of charge conjugation, the Dirac field   is transformed into the field that couples with the reverse charge to the electromagnetic potentials . If the Dirac equation (over the double index is to be summed)
  
    
      
        ψ 
       
     
    {\ displaystyle \ psi} 
   
 
  
    
      
        
          ψ 
          
            c 
           
         
       
     
    {\ displaystyle \ psi _ {c}} 
   
 
  
    
      
        e 
       
     
    {\ displaystyle e} 
   
 
  
    
      
        
          A. 
          
            0 
           
         
        , 
        
          A. 
          
            1 
           
         
        , 
        
          A. 
          
            2 
           
         
        , 
        
          A. 
          
            3 
           
         
       
     
    {\ displaystyle A_ {0}, A_ {1}, A_ {2}, A_ {3}} 
   
 
  
    
      
        ψ 
       
     
    {\ displaystyle \ psi} 
   
 
  
    
      
        n 
       
     
    {\ displaystyle n} 
   
 
  
    
      
        
          
            ( 
           
         
        
          γ 
          
            n 
           
         
        ( 
        
          i 
         
        
          ∂ 
          
            n 
           
         
        - 
        e 
        
          A. 
          
            n 
           
         
        ) 
        - 
        m 
        
          
            ) 
           
         
        ψ 
        = 
        0 
       
     
    {\ displaystyle {\ bigl (} \ gamma ^ {n} \, (\ mathrm {i} \, \ partial _ {n} -eA_ {n}) - m {\ bigr)} \ psi = 0} 
   
 is satisfied, then the charge conjugate field of the equation
  
    
      
        
          ψ 
          
            c 
           
         
       
     
    {\ displaystyle \ psi _ {c}} 
   
 
  
    
      
        
          
            ( 
           
         
        
          γ 
          
            n 
           
         
        ( 
        
          i 
         
        
          ∂ 
          
            n 
           
         
        + 
        e 
        
          A. 
          
            n 
           
         
        ) 
        - 
        m 
        
          
            ) 
           
         
        
          ψ 
          
            c 
           
         
        = 
        0 
       
     
    {\ displaystyle {\ bigl (} \ gamma ^ {n} \, (\ mathrm {i} \, \ partial _ {n} + eA_ {n}) - m {\ bigr)} \ psi _ {c} = 0} 
   
 suffice.
Complex conjugate  the first equation yields
  
    
      
        
          
            ( 
           
         
        
          γ 
          
            n 
            ∗ 
           
         
        ( 
        - 
        
          i 
         
        
          ∂ 
          
            n 
           
         
        - 
        e 
        
          A. 
          
            n 
           
         
        ) 
        - 
        m 
        
          
            ) 
           
         
        
          ψ 
          
            ∗ 
           
         
        = 
        0 
          
        . 
       
     
    {\ displaystyle {\ bigl (} \ gamma ^ {n \, *} \, (- \ mathrm {i} \, \ partial _ {n} -eA_ {n}) - m {\ bigr)} \ psi ^ {*} = 0 \.} 
   
 So it satisfies the charge conjugate equation if there is a matrix  for which:
  
    
      
        
          ψ 
          
            c 
           
         
        = 
        B. 
        
          ψ 
          
            ∗ 
           
         
       
     
    {\ displaystyle \ psi _ {c} = B \ psi ^ {*}} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
  
  
    
      
        - 
        
          γ 
          
            n 
            ∗ 
           
         
        = 
        
          B. 
          
            - 
            1 
           
         
        
          γ 
          
            n 
           
         
        B. 
       
     
    {\ displaystyle - \ gamma ^ {n \, *} = B ^ {- 1} \ gamma ^ {n} B} 
   
 Such a matrix exists for every representation of  the Dirac matrices  , because all irreducible representations of  the Dirac algebra  are equivalent to one another, and the Dirac algebra represents just like
  
    
      
        - 
        
          γ 
          
            n 
            ∗ 
           
         
       
     
    {\ displaystyle - \ gamma ^ {n \, *}} 
   
 
  
    
      
        
          γ 
          
            n 
           
         
        . 
       
     
    {\ displaystyle \ gamma ^ {n} \ ,.} 
   
 
If you write, the charge-conjugate field has the form
  
    
      
        
          ψ 
          
            ∗ 
           
         
        = 
        
          γ 
          
            0 
            
              T 
             
           
         
        
          
            
              ψ 
              ¯ 
             
           
          
            T 
           
         
       
     
    {\ displaystyle \ psi ^ {*} = \ gamma ^ {0 \, {\ text {T}}} \, {\ overline {\ psi}} ^ {\ text {T}}} 
   
 
  
    
      
        
          ψ 
          
            c 
           
         
        = 
        C. 
        
          
            
              ψ 
              ¯ 
             
           
          
            T 
           
         
       
     
    {\ displaystyle \ psi _ {c} = C \, {\ overline {\ psi}} ^ {\ text {T}}} 
   
 
  
    
      
        C. 
        = 
        B. 
        
          γ 
          
            0 
            
              T 
             
           
         
        . 
       
     
    {\ displaystyle C = B \, \ gamma ^ {0 \, {\ text {T}}} \ ,.} 
   
  Wegen satisfies the charge conjugation matrix
  
    
      
        
          γ 
          
            n 
            † 
           
         
        = 
        
          γ 
          
            0 
           
         
        
          γ 
          
            n 
           
         
        
          γ 
          
            0 
           
         
       
     
    {\ displaystyle \ gamma ^ {n \, \ dagger} = \ gamma ^ {0} \ gamma ^ {n} \ gamma ^ {0}} 
   
 
  
    
      
        - 
        
          γ 
          
            n 
            
              T 
             
           
         
        = 
        
          C. 
          
            - 
            1 
           
         
        
          γ 
          
            n 
           
         
        C. 
        . 
       
     
    {\ displaystyle - \ gamma ^ {n \, {\ text {T}}} = C ^ {- 1} \ gamma ^ {n} C \ ,.} 
   
 In the Dirac representation of  the gamma matrices, the charge conjugation matrix can be written as
  
    
      
        C. 
        = 
        
          i 
         
        
          γ 
          
            2 
           
         
        
          γ 
          
            0 
           
         
        = 
        
          
            ( 
            
              
                
                  - 
                  
                    i 
                   
                  
                    σ 
                    
                      2 
                     
                   
                 
               
              
                
                  - 
                  
                    i 
                   
                  
                    σ 
                    
                      2 
                     
                   
                 
               
             
            ) 
           
         
       
     
    {\ displaystyle C = \ mathrm {i} \, \ gamma ^ {2} \, \ gamma ^ {0} = {\ begin {pmatrix} & - \ mathrm {i} \ sigma ^ {2} \\ - \ mathrm {i} \ sigma ^ {2} \ end {pmatrix}}} 
   
 be chosen to be real, antisymmetric  and unitary  ,
  
    
      
        - 
        C. 
        = 
        
          C. 
          
            - 
            1 
           
         
        = 
        
          C. 
          
            T 
           
         
        = 
        
          C. 
          
            † 
           
         
        . 
       
     
    {\ displaystyle -C = C ^ {- 1} = C ^ {\ text {T}} = C ^ {\ dagger} \ ,.} 
   
 
Eigenvalues and eigenstates 
 
For the eigen-states of  the C-operator on a particle we have:
  
    
      
        
          
            C. 
           
         
        
          | 
         
        ψ 
        ⟩ 
        = 
        
          η 
          
            C. 
           
         
        
          | 
         
        
          
            
              ψ 
              ¯ 
             
           
         
        ⟩ 
       
     
    {\ displaystyle {\ mathcal {C}} \, | \ psi \ rangle = \ eta _ {C} \, | {\ bar {\ psi}} \ rangle} 
   
  Since the parity operator is  an involution (mathematics)  , the following applies
  
    
      
        
          
            
              C. 
             
           
          
            2 
           
         
        
          | 
         
        ψ 
        ⟩ 
        = 
        
          η 
          
            C. 
           
         
        
          
            C. 
           
         
        
          | 
         
        
          
            
              ψ 
              ¯ 
             
           
         
        ⟩ 
        = 
        
          η 
          
            C. 
           
          
            2 
           
         
        
          | 
         
        ψ 
        ⟩ 
        = 
        
          | 
         
        ψ 
        ⟩ 
       
     
    {\ displaystyle {\ mathcal {C}} ^ {2} | \ psi \ rangle = \ eta _ {C} {\ mathcal {C}} | {\ bar {\ psi}} \ rangle = \ eta _ {C } ^ {2} | \ psi \ rangle = | \ psi \ rangle} 
   
 This only allows eigenvalues   , which is the C parity of the particle.
  
    
      
        
          η 
          
            C. 
           
         
        = 
        ± 
        1 
       
     
    {\ displaystyle \ eta _ {C} = \ pm 1} 
   
 
However, this means that , and the same quantum charges have, so only neutral systems eigenstates of the C-parity operator may be, d. H. the photon  as well as  bound  particle-antiparticle states like the neutral  pion  or  positronium  .
  
    
      
        
          
            C. 
           
         
        
          | 
         
        ψ 
        ⟩ 
       
     
    {\ displaystyle {\ mathcal {C}} \, | \ psi \ rangle} 
   
 
  
    
      
        
          
            
              | 
             
           
         
        ψ 
        ⟩ 
       
     
    {\ displaystyle {\ mathcal {|}} \ psi \ rangle} 
   
 
  
    
      
        
          π 
          
            0 
           
         
       
     
    {\ displaystyle \ pi ^ {0}} 
   
  
literature See also  
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">