Cluster disintegration

from Wikipedia, the free encyclopedia

The cluster decay (also cluster emission , English cluster decay ) is a very rare type of radioactive decay . A lighter atomic nucleus is emitted, which is heavier than an alpha particle , but with 6 to 14 percent of the mass of the mother nucleus, much lighter than the typical fission fragments of nuclear fission . In addition, no neutrons are released.

So far, nuclei between carbon-14 and silicon-34 have been observed as emitted clusters. In most cases, it is not a question of the most stable nuclei according to their atomic number, but rather their isotopes with a higher neutron excess , corresponding to the neutron excess of the parent nucleus.

history

The cluster disintegration was theoretically predicted by Aureliu Săndulescu , Dorin N. Poenaru and Walter Greiner in 1980. HJ Rose and George Arnold Jones provided the first experimental evidence in 1983 at the University of Oxford , which was published in the journal Nature in early 1984 . They found that the radium isotope radium-223 (an alpha emitter with a half-life of 11.43 days) can decay directly to lead-209 with the emission of a carbon-14 atomic nucleus :

Type and appearance

The cluster decay has so far only been observed in some alpha-emitting radionuclides with ordinal numbers from 87 ( Francium ). Because of this occurrence of cluster and alpha decay in the same nuclide, the nuclides concerned are referred to as dual nuclear decay . In terms of nuclear physics, the cluster disintegration can be understood as a strongly asymmetrical nuclear fission.

The name "cluster" (English. Cluster , such as "lumps") was chosen because the emitted particles have an "accumulation" of more than two protons and neutrons is.

The probability of a cluster disintegration is lower by a factor of 10 9 to 10 16 compared to alpha decay . According to previous observations, the emitted clusters have a number of protons between 6 and 14. The preferred emitted clusters are carbon-14, neon-24 and magnesium-28. The ejection speed of the cluster is between 16,000 and 22,000 km / s, the recoil speed of the daughter core between 1,100 and 3,600 km / s.


cluster decay taking place
Magic
number (s)
E
(MeV)
221 Fr 207 Tl + 14 C N = 126; N = 8 31.292 14.52
221 Ra 207 Pb + 14 C Z = 82; N = 8 32.395 13.39
222 Ra 208 Pb + 14 C Z = 82, N = 126; N = 8 33,049 11.01
223 Ra 209 Pb + 14 C Z = 82; N = 8 31,828 15.20
224 Ra 210 Pb + 14 C Z = 82; N = 8 30.535 15.68
226 Ra 212 Pb + 14 C Z = 82; N = 8 28.196 21.19
223 Ac 209 Bi + 14 C N = 126; N = 8 33,064 12.60
223 Ac 208 Pb + 15 N Z = 82, N = 126; N = 8 39.473 > 14.76
225 Ac 211 Bi + 14 C N = 8 30.476 17.16
226 Th 208 Pb + 18 O Z = 82, N = 126; Z = 8 45.726 > 15.30
228 Th 208 Pb + 20 O Z = 82, N = 126; Z = 8 44.722 20.72
230 Th 206 Hg + 24 Ne N = 126 57.761 24.61
232 Th 208 Hg + 24 Ne - 54.509 > 29.20
232 Th 206 Hg + 26 Ne N = 126 55.964 > 29.20
231 Pa 208 Pb + 23 F Z = 82, N = 126 51.843 26.02
231 Pa 207 Tl + 24 Ne N = 126 60.410 23.23
230 U   → 208 Pb + 22 Ne Z = 82, N = 126 61.387 19.57
232 U   → 208 Pb + 24 Ne Z = 82, N = 126 62,309 21.08
232 U   → 204 Hg + 28 Mg - 74.318 > 22.26
233 U   → 209 Pb + 24 Ne Z = 82 60.485 24.83
233 U   → 208 Pb + 25 Ne Z = 82, N = 126 60.776 24.84
233 U   → 205 Hg + 28 Mg - 74.225 > 27.59
234 U   → 210 Pb + 24 Ne Z = 82 58.825 25.92
234 U   → 208 Pb + 26 Ne Z = 82, N = 126 59.464 25.92
234 U   → 206 Hg + 28 Mg N = 126 74.110 27.54
235 U   → 211 Pb + 24 Ne Z = 82 57,362 27.42
235 U   → 210 Pb + 25 Ne Z = 82 57.756 27.42
235 U   → 207 Hg + 28 Mg - 72.158 > 28.10
235 U   → 206 Hg + 29 Mg N = 126 72,485 > 28.09
236 U   → 212 Pb + 24 Ne Z = 82 55.944 > 25.90
236 U   → 210 Pb + 26 Ne Z = 82 56.744 > 25.90
236 U   → 208 Hg + 28 Mg - 70.564 27.58
236 U   → 206 Hg + 30 Mg N = 126 72,303 27.58
237 Np 207 Tl + 30 Mg N = 126 74.818 > 26.93
236 Pu 208 Pb + 28 Mg Z = 82, N = 126 79.669 21.67
238 Pu 210 Pb + 28 Mg Z = 82 75.911 25.70
238 Pu 208 Pb + 30 Mg Z = 82, N = 126 76.823 25.70
238 Pu 206 Hg + 32 Si N = 126 76.823 25.70
240 Pu 206 Hg + 34 Si N = 126; N = 20 91.191 25.27
241 Am 207 Tl + 34 Si N = 126; N = 20 93.927 > 24.41
242 Cm 208 Pb + 34 Si Z = 82, N = 126; N = 20 96.510 23.15

In the Karlsruhe nuclide map from 2012, 20 radionuclides are listed which, in addition to the dominant alpha decay, also have cluster emissions:

With some radionuclides up to four possibilities of cluster disintegration have been observed, for example three with the naturally occurring uranium isotope uranium-234: the emission of a neon-24, a neon-26 or a magnesium-28 core.

reaction Branching
ratio (%)
E
(MeV)
Cluster Speed
(km / s)
Daughter core Speed
(km / s)
0.9 · 10 −9 60.485 Neon 24 020,866 Lead-210 002,390
0.9 · 10 −9 60.776 Neon 26 020,024 Lead-208 002,503
1.4 · 10 −9 74.225 Magnesium-28 021,222 Mercury 206 002,884
For comparison: alpha decay
≈100 04.859 Helium-4 016,567 Thorium-230 000.264

Experimentally proven cluster decays

The table on the right gives an overview of experimentally proven cluster decays with the following information:

  • the cluster disintegration that takes place with the cores involved: mother core → daughter core + cluster,  
  • Magic number (s) occurring as proton ( Z ) or neutron number ( N ) of the decay products ,  
  • the due to the mass defect energy released E in MeV :  ,  
Emerging cluster cores:
element Neutron count
133 134 135 136 137 138 139 140 141 142 143 144 145 146
87 Fr 14 C
88 Ra 14 C 14 C 14 C 14 C 14 C
89 Ac 14 C
15 N
14 C
90 th 18 O 20 O 24 Ne 24 Ne
26 Ne
91 Pa 23 F
24 Ne
92 U 22 Ne 24 Ne

28 Mg
24 Ne
25 Ne
28 Mg
24 Ne
26 Ne
28 Mg
24 Ne
25 Ne
28 Mg
29 Mg
24 Ne
26 Ne
28 Mg
30 Mg
93 Np 30 mg
94 Pu 28 mg 28 Mg
30 Mg
32 Si


34 Si
95 am 34 Si
96 cm 34 Si
Resulting daughter nuclei (mostly lead, mercury, rarely thallium, bismuth)
element Neutron count
133 134 135 136 137 138 139 140 141 142 143 144 145 146
87 Fr 207 Tl
88 Ra 207 Pb 208 Pb 209 Pb 210 Pb 212 Pb
89 Ac 209 Bi
208 Pb
211 Pb
90 th 208 Pb 208 Pb 206 ed 208 Hg
206 Hg
91 Pa 208 Pb
207 Tl
92 U 208 Pb 208 Pb

204 Hg
209 Pb
208 Pb
205 Hg
210 Pb
208 Pb
206 Hg
211 Pb
210 Pb
207 Hg
206 Hg
212 Pb
210 Pb
208 Hg
206 Hg
93 Np 207 Tl
94 Pu 208 Pb 210 Pb
208 Pb
206 Hg


206 ed
95 am 207 Tl
96 cm 208 Pb

literature

  • Christian Beck (Ed.): Clusters in Nuclei . Volume 1 (= Lecture Notes in Physics. Volume 818). Springer, 2010, ISBN 978-3-642-13898-0 .
  • Christian Beck (Ed.): Clusters in Nuclei . Volume 2 (= Lecture Notes in Physics. Volume 848). Springer, 2012, ISBN 978-3-642-24706-4 .
  • Doru S. Delion: Theory of Particle and Cluster Emission . (= Lecture Notes in Physics. Volume 819). Springer, 2010, ISBN 978-3-642-14405-9 .

Individual evidence

  1. Aureliu Săndulescu, Dorin N. Poenaru, Walter Greiner: New type of decay of heavy nuclei intermediate between fission and a decay. In: Soviet Journal of Particles and Nuclei. Volume 11, number 6, 1980, p. 528 (= Fizika Elementarnykh Chastits i Atomnoya Yadra ). Volume 11, 1980, p. 1334.
  2. ^ HJ Rose, GA Jones: A new kind of natural radioactivity. In: Nature. Volume 307, Number 5948, January 19, 1984, pp. 245-247 doi: 10.1038 / 307245a0 .
  3. K. Bethge, G. Walter. W. Wiedemann: Nuclear Physics. 2nd Edition. Springer 2001, ISBN 3-540-41444-4 , p. 236.
  4. ^ KH Lieser: Nuclear and Radiochemistry. 2001, ISBN 3-527-30317-0 , p. 67.
  5. ^ J. Magill, G. Pfennig, R. Dreher, Z. Sóti: Karlsruher Nuklidkarte. 8th edition. 2012. Nucleonica GmbH, 2012, ISBN 978-92-79-02431-3 (wall map) or ISBN 978-3-00-038392-2 (folding map).
  6. KP Santhosh, B. Priyanka, MS Unnikrishnan: Cluster decay half lives of trans-lead nuclei within the Coulomb and proximity potential model. In: Nuclear Physics A. Volume 889, 2012, pp. 29-50, doi: 10.1016 / j.nuclphysa.2012.07.002 , arxiv : 1207.4384 .
  7. ^ Attila Vértes, Sándor Nagy, Zoltán Klencsár, Rezso György Lovas (eds.): Handbook of Nuclear Chemistry. Vol. 1: Basics of Nuclear Science. 2nd Edition. Springer, 2010, ISBN 978-1-4419-0719-6 , pp. 840-841.
  8. DN Poenaru, Y. Nagame, RA Gherghescu, W. Greiner: Systematics of cluster decay modes. In: Physical Review C. Volume 65, number 4, 2002, p. 054308, doi: 10.1103 / PhysRevC.65.054308 .
  9. DN Poenaru, Y. Nagame, RA Gherghescu, W. Greiner: Erratum: Systematics of cluster decay modes, [Phys. Rev. C 65, 2002, p. 054308]. In: Physical Review C. Volume 66, number 4, 2002, p. 049902 (E), doi: 10.1103 / PhysRevC.66.049902 .

Web links

  • Literature review
  • DN Poenaru, W. Greiner: Cluster radioactivity - past, present and future. Workshop on State of the Art in Nuclear Cluster Physics, May 13-16, 2008, Strasbourg ( theory.nipne.ro PDF, 52 pages).