The Lebesgue-Stieltjes measure is a term from measure theory , a sub-area of mathematics. It contains the Lebesgue measure as a special case and is used to construct the Lebesgue-Stieltjes integral .
definition
Given a monotonically increasing , right continuous function and the measuring room , with the Borel σ-algebra called. Then the unambiguously determined dimension is called on this measuring room
F.
:
R.
→
R.
{\ displaystyle F \ colon \ mathbb {R} \ to \ mathbb {R}}
(
R.
,
B.
(
R.
)
)
{\ displaystyle (\ mathbb {R}, {\ mathcal {B}} (\ mathbb {R}))}
B.
{\ displaystyle {\ mathcal {B}}}
λ
F.
{\ displaystyle \ lambda _ {F}}
λ
F.
(
(
a
,
b
]
)
: =
F.
(
b
)
-
F.
(
a
)
For
a
<
b
{\ displaystyle \ lambda _ {F} ((a, b]): = F (b) -F (a) \ quad {\ text {for}} \ quad a <b}
Lebesgue Stieltjes measure.
Examples
The best-known example of a Lebesgue-Stieltjes measure is the Lebesgue measure , from which the Lebesgue integral is constructed. Here is .
λ
(
(
a
,
b
]
)
=
b
-
a
{\ displaystyle \ lambda ((a, b]) = ba}
F.
(
x
)
=
x
{\ displaystyle F (x) = x}
For and with for and for , the Lebesgue-Stieltjes measure is the Dirac measure .
a
∈
R.
{\ displaystyle a \ in \ mathbb {R}}
F.
:
R.
→
R.
{\ displaystyle F \ colon \ mathbb {R} \ to \ mathbb {R}}
F.
(
x
)
=
0
{\ displaystyle F (x) = 0}
x
<
a
{\ displaystyle x <a}
F.
(
x
)
=
1
{\ displaystyle F (x) = 1}
x
≥
a
{\ displaystyle x \ geq a}
λ
F.
{\ displaystyle \ lambda _ {F}}
δ
a
{\ displaystyle \ delta _ {a}}
If a nonnegative, continuous function with an antiderivative , then the measure is with density .
f
:
R.
→
[
0
,
∞
)
{\ displaystyle f \ colon \ mathbb {R} \ to [0, \ infty)}
F.
{\ displaystyle F}
λ
F.
{\ displaystyle \ lambda _ {F}}
f
{\ displaystyle f}
If in addition and , then is a probability measure and is the distribution function .
lim
x
→
-
∞
F.
(
x
)
=
0
{\ displaystyle \ lim _ {x \ to - \ infty} F (x) = 0}
lim
x
→
∞
F.
(
x
)
=
1
{\ displaystyle \ lim _ {x \ to \ infty} F (x) = 1}
λ
F.
{\ displaystyle \ lambda _ {F}}
F.
{\ displaystyle F}
If both of the above cases are met, it is a probability measure with density. These measures play an important role in stochastics .
construction
Let the half-ring and a growing, right-sided continuous function be given . Then
J
: =
{
(
a
,
b
]
:
a
,
b
∈
R.
,
a
<
b
}
{\ displaystyle {\ mathcal {J}}: = \ {(a, b]: a, b \ in \ mathbb {R}, a <b \}}
F.
{\ displaystyle F}
μ
F.
:
J
→
R.
,
μ
F.
(
(
a
,
b
]
)
: =
F.
(
b
)
-
F.
(
a
)
,
(
a
<
b
)
{\ displaystyle \ mu _ {F}: {\ mathcal {J}} \ rightarrow \ mathbb {R}, \ mu _ {F} ((a, b]): = F (b) -F (a), (a <b)}
a σ-finite premise , the so-called Lebesgue-Stieltjessches premise . Then, with the extension set from Carathéodory, a clear continuation of this pre-measure can be constructed into a measure. For this purpose, an external measure , the so-called external Lebesgue-Stieltjes measure, is defined and this is restricted to the σ-algebra generated by . This σ-algebra is then exactly Borel's σ-algebra and it is .
ν
F.
{\ displaystyle \ nu _ {F}}
J
{\ displaystyle {\ mathcal {J}}}
B.
(
R.
)
=
σ
(
J
)
{\ displaystyle {\ mathcal {B}} (\ mathbb {R}) = \ sigma ({\ mathcal {J}})}
λ
F.
=
ν
F.
|
σ
(
J
)
{\ displaystyle \ lambda _ {F} = \ nu _ {F} | \ sigma ({\ mathcal {J}})}
completion
The dimension space constructed above is generally not a complete dimension space . Since the Lebesgue-Stieltjes external measure is also a metric external measure , the σ-algebra of the measurable sets contains the Borel σ-algebra with regard to the external measure . Hence the measure space is the completion of .
A.
ν
F.
{\ displaystyle {\ mathcal {A}} _ {\ nu _ {F}}}
(
R.
,
A.
ν
F.
,
ν
F.
|
A.
ν
F.
)
{\ displaystyle (\ mathbb {R}, {\ mathcal {A}} _ {\ nu _ {F}}, \ nu _ {F} | _ {{\ mathcal {A}} _ {\ nu _ {F }}})}
(
R.
,
B.
(
R.
)
,
λ
F.
)
{\ displaystyle (\ mathbb {R}, {\ mathcal {B}} (\ mathbb {R}), \ lambda _ {F})}
literature
Jürgen Elstrodt: Measure and integration theory. 6th edition. Springer, Berlin / Heidelberg / New York 2009, ISBN 978-3-540-89727-9 .
Achim Klenke: Probability Theory. 2nd Edition. Springer, Berlin / Heidelberg 2008, ISBN 978-3-540-76317-8 .
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">