In mathematics , the -th binomial mean coefficient for a nonnegative integer is given by
![n](https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b)
![{\ displaystyle {2n \ choose n} = {\ frac {(2n)!} {(n!) ^ {2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d268a166e451be9e141fecf714f5b2ba75f9e88f)
The name "mean binomial coefficient" comes from the fact that these binomial coefficients lie exactly in the middle of the line in Pascal's triangle :
|
|
|
|
|
|
|
|
|
|
![\ mathbf {1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/235ffc0f1788b720aef5caa7b97246a84421fd0e) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
![1](https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
![1](https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf) |
|
![{\ mathbf 2}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8db0cc42a494c9891ec4a9c91dc2c88d1fb65f1d) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
![1](https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf) |
|
![3](https://wikimedia.org/api/rest_v1/media/math/render/svg/991e33c6e207b12546f15bdfee8b5726eafbbb2f) |
|
![3](https://wikimedia.org/api/rest_v1/media/math/render/svg/991e33c6e207b12546f15bdfee8b5726eafbbb2f) |
|
![1](https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf) |
|
|
|
|
|
|
|
|
|
|
|
|
|
![1](https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf) |
|
![4th](https://wikimedia.org/api/rest_v1/media/math/render/svg/295b4bf1de7cd3500e740e0f4f0635db22d87b42) |
|
![{\ displaystyle \ mathbf {6}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ee8a5cef3798b0ef8704ea003512a42028b3cfa8) |
|
![4th](https://wikimedia.org/api/rest_v1/media/math/render/svg/295b4bf1de7cd3500e740e0f4f0635db22d87b42) |
|
![1](https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf) |
|
|
|
|
|
|
|
|
|
|
|
![1](https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf) |
|
![5](https://wikimedia.org/api/rest_v1/media/math/render/svg/29483407999b8763f0ea335cf715a6a5e809f44b) |
|
![10](https://wikimedia.org/api/rest_v1/media/math/render/svg/4ec811eb07dcac7ea67b413c5665390a1671ecb0) |
|
![10](https://wikimedia.org/api/rest_v1/media/math/render/svg/4ec811eb07dcac7ea67b413c5665390a1671ecb0) |
|
![5](https://wikimedia.org/api/rest_v1/media/math/render/svg/29483407999b8763f0ea335cf715a6a5e809f44b) |
|
![1](https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf) |
|
|
|
|
|
|
|
|
|
![1](https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf) |
|
![6th](https://wikimedia.org/api/rest_v1/media/math/render/svg/39d81124420a058a7474dfeda48228fb6ee1e253) |
|
![15th](https://wikimedia.org/api/rest_v1/media/math/render/svg/ea331af19ed2ccc36bb864409b6c305e18cff30f) |
|
![{\ displaystyle \ mathbf {20}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/57dbf44f7317344b0efbd337179de8cbc481e81e) |
|
![15th](https://wikimedia.org/api/rest_v1/media/math/render/svg/ea331af19ed2ccc36bb864409b6c305e18cff30f) |
|
![6th](https://wikimedia.org/api/rest_v1/media/math/render/svg/39d81124420a058a7474dfeda48228fb6ee1e253) |
|
![1](https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf) |
|
|
|
|
|
|
|
![1](https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf) |
|
![7th](https://wikimedia.org/api/rest_v1/media/math/render/svg/ee716ec61382a6b795092c0edd859d12e64cbba8) |
|
![21st](https://wikimedia.org/api/rest_v1/media/math/render/svg/77ebb9ccf6080ba5c9a6ea8973cb2f26c50211cf) |
|
![35](https://wikimedia.org/api/rest_v1/media/math/render/svg/2d9e1349d41046b756a2984168e74dec26cdcf2a) |
|
![35](https://wikimedia.org/api/rest_v1/media/math/render/svg/2d9e1349d41046b756a2984168e74dec26cdcf2a) |
|
![21st](https://wikimedia.org/api/rest_v1/media/math/render/svg/77ebb9ccf6080ba5c9a6ea8973cb2f26c50211cf) |
|
![7th](https://wikimedia.org/api/rest_v1/media/math/render/svg/ee716ec61382a6b795092c0edd859d12e64cbba8) |
|
![1](https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf) |
|
|
|
|
|
![1](https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf) |
|
![8th](https://wikimedia.org/api/rest_v1/media/math/render/svg/1aaa997e6ad67716cfaa9a02c4df860bf60a95b5) |
|
![28](https://wikimedia.org/api/rest_v1/media/math/render/svg/c88f99b6131febe59de9aeeb35f429c94fa36e78) |
|
![56](https://wikimedia.org/api/rest_v1/media/math/render/svg/66031fbe6af1dc721e1366e8e4f8c31d789d0b75) |
|
![{\ displaystyle \ mathbf {70}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2e090a2b328c6b99463f0929e76bba3eb05fdc1d) |
|
![56](https://wikimedia.org/api/rest_v1/media/math/render/svg/66031fbe6af1dc721e1366e8e4f8c31d789d0b75) |
|
![28](https://wikimedia.org/api/rest_v1/media/math/render/svg/c88f99b6131febe59de9aeeb35f429c94fa36e78) |
|
![8th](https://wikimedia.org/api/rest_v1/media/math/render/svg/1aaa997e6ad67716cfaa9a02c4df860bf60a95b5) |
|
![1](https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf) |
|
|
The first mean binomial coefficients are therefore (sequence A000984 in OEIS ):
- 1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620, ...
Representations
It applies
![{\ displaystyle {2n \ choose n} = 2 ^ {2n} \ cdot {\ frac {1 \ cdot 3 \ cdot 5 \ cdots (2n-1)} {2 \ cdot 4 \ cdot 6 \ cdots (2n)} }.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8a2fdd7b817cb56d79952062526d67ede5e95946)
The fraction is related to the Valais product .
After the Vandermonde convolution applies
![{\ displaystyle {2n \ choose n} = \ sum _ {k = 0} ^ {n} {n \ choose k} ^ {2}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/67d4d1aa82f760524dcefd0c13840cbe36e4cf9f)
Estimates
With the help of the Stirling formula one obtains for the estimation:
![n \ geq 1](https://wikimedia.org/api/rest_v1/media/math/render/svg/d8ce9ce38d06f6bf5a3fe063118c09c2b6202bfe)
![{\ displaystyle {\ frac {1} {2}} {\ frac {4 ^ {n}} {\ sqrt {\ pi n}}} <{2n \ choose n} <{\ frac {4 ^ {n} } {\ sqrt {\ pi n}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/62b0ccbc46cce771ceca39f5c39e774e3e921cea)
So the following applies (for notation see Landau symbol ):
![{\ displaystyle {2n \ choose n} \ in \ Theta \ left ({\ frac {4 ^ {n}} {\ sqrt {n}}} \ right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4787111dc4df4756c0f58c0c20141a3208a4d7d9)
More accurate:
![{\ displaystyle \ lim _ {n \ rightarrow \ infty} \ left ({2n \ choose n} \ left ({\ frac {4 ^ {n}} {\ sqrt {\ pi n}}} \ right) ^ { -1} \ right) = 1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0c6672554bdc31a8f61c64971b789049d5dc58c6)
Generating function
The generating function is
![{\ displaystyle {\ frac {1} {\ sqrt {1-4x}}} = \ mathbf {1} + \ mathbf {2} x + \ mathbf {6} x ^ {2} + \ mathbf {20} x ^ {3} + \ mathbf {70} x ^ {4} + \ mathbf {252} x ^ {5} + \ cdots.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2a06350bffb1445eef2879c41c4ecda84bcec1bc)
Number theoretic properties
According to Wolstenholme's theorem, applies to prime numbers
![{\ displaystyle {2p \ choose p} \ equiv 2 \ mod p ^ {3}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/03606ca745582883e328912e2587f41fa744de9c)
(for the symbolism see congruence (number theory) ).
Also, there are no odd numbers except .
![1](https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf)
Furthermore, the numbers for are never square-free , see Sárkőzy's theorem .
![n> 4](https://wikimedia.org/api/rest_v1/media/math/render/svg/3c6b13dc8b113121cdaf76a723a61aa4f8be1468)
Integral representation
An integral representation is as follows:
![{\ displaystyle {\ binom {2n} {n}} = {\ frac {2 ^ {2n + 1}} {\ pi}} \ int \ limits _ {0} ^ {\ infty} {\ frac {\ mathrm {d} x} {(x ^ {2} +1) ^ {n + 1}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0523108d3ad8d5debb2f83c31473822197299406)
Representation with gamma function
![{\ displaystyle {\ binom {2n} {n}} = (- 4) ^ {n} {\ frac {\ sqrt {\ pi}} {\ Gamma ({\ frac {1} {2}} - n) \ Gamma (1 + n)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0d4e7e323a075cd2303bb9a2ecbbc56c3196f304)
Rows
![{\ displaystyle \ sum _ {n = 0} ^ {\ infty} {\ frac {\ binom {2n} {n}} {(- 4) ^ {n}}} = {\ frac {1} {\ sqrt {2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9d23e8ff45c2dd9c59064f72b4378cba0dc1e348)
In general, the following applies (if the series diverges for regularized values calculated with the gamma function):
-
With
In addition, the following applies to partial sums (sequence A285388 in OEIS ):
![{\ displaystyle \ lim _ {n \ rightarrow \ infty} \ sum _ {k = 0} ^ {n ^ {2} -1} {\ frac {2k \ choose k} {4 ^ {k} n}} = \ lim _ {n \ rightarrow \ infty} {\ frac {n {2n ^ {2} \ choose n ^ {2}}} {2 ^ {2n ^ {2} -1}}} = \ lim _ {m \ rightarrow \ infty} {\ frac {{\ sqrt {m}} {2m \ choose m}} {2 ^ {2m-1}}} = {\ frac {2} {\ sqrt {\ pi}}} = {\ frac {1} {\ Gamma ({\ frac {3} {2}})}} = \ sum _ {n = 0} ^ {\ infty} {(- 1) ^ {n} {\ frac { \ Gamma ({\ frac {n + 1} {2}})} {\ Gamma (1 + {\ frac {n} {2}})}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b2c6bb0e2bcc0293b50263d669d12425a6c11617)
Series of reciprocals
The following applies:
![{\ displaystyle \ sum _ {n = 1} ^ {\ infty} {\ frac {1} {\ binom {2n} {n}}} = {\ frac {1} {27}} (2 \ pi {\ sqrt {3}} + 9) = 0 {,} 7363998587187 \ ldots}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c146276e990344a1c9300fce5b11571ec14f370a)
The individual decimal places form sequence A073016 in OEIS .
Some more similar series are:
![{\ displaystyle {\ begin {aligned} \ sum _ {n = 1} ^ {\ infty} {\ frac {1} {n {\ binom {2n} {n}}}} & = {\ frac {1} {9}} \ pi {\ sqrt {3}} & = & \, 0 {,} 60459 \ ldots \\\ sum _ {n = 1} ^ {\ infty} {\ frac {1} {n ^ { 2} {\ binom {2n} {n}}}} & = {\ frac {1} {18}} \ pi ^ {2} & = & \, 0 {,} 54831 \ dots \\\ sum _ { n = 1} ^ {\ infty} {\ frac {1} {n ^ {3} {\ binom {2n} {n}}}} & = {\ frac {1} {18}} \ pi {\ sqrt {3}} \ left (\ psi _ {1} ({\ tfrac {1} {3}}) - \ psi _ {1} ({\ tfrac {2} {3}}) \ right) - {\ frac {4} {3}} \ zeta (3) & {} & {} \\\ sum _ {n = 1} ^ {\ infty} {\ frac {1} {n ^ {4} {\ binom { 2n} {n}}}} & = {\ frac {17} {3240}} \ pi ^ {4} & = & \, 0 {,} 51109 \ ldots \\\ sum _ {n = 1} ^ { \ infty} {\ frac {1} {n ^ {5} {\ binom {2n} {n}}}} & = {\ frac {1} {432}} \ pi {\ sqrt {3}} \ left (\ psi _ {3} ({\ tfrac {1} {3}}) - \ psi _ {3} ({\ tfrac {2} {3}}) \ right) - {\ frac {19} {3 }} \ zeta (5) + {\ frac {1} {9}} \ zeta (3) \ pi ^ {2} & {} & {} \ end {aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/795bb3a2058231f8898950bb09f5a70742f4e327)
see. Follow A073010 in OEIS , Follow A086463 in OEIS , -, Follow A086464 in OEIS , -. Here referred to the digamma function , the Trigammafunktion and generally the th polygamma function ; the Riemann zeta function and the circle number .
![{\ displaystyle \ \ psi _ {1}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/65d8cf3bbe48ea4be3aa2c1ba05147f21a593bf2)
![{\ displaystyle \ \ psi _ {2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/25845e8a741dffbf9c370b3293c1b5274f927927)
![{\ displaystyle \ \ psi _ {n}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/362333998bb6698749237cebbed688d34c8b82bf)
![n](https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b)
![{\ displaystyle \ \ zeta (x)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b6744d2f3736eccb521b99c03066a0b8242389f5)
![{\ displaystyle \ \ pi}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e403f488c1c72edd92da8a25b890332b6dfe6cc8)
In general, the following formula applies:
![{\ displaystyle \ sum _ {n = 1} ^ {\ infty} {\ frac {1} {n ^ {k} {\ binom {2n} {n}}}} = {\ frac {1} {2} } \, \ cdot \, {} _ {k + 1} F_ {k} \ left (\ underbrace {1, \ ldots, 1} _ {k + 1}; {\ tfrac {3} {2}}, \ underbrace {2, \ ldots, 2} _ {k-1}; {\ tfrac {1} {4}} \ right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/98ef5084dcb1c8278f966dad604f4c66588c1bdf)
for , where denotes the generalized hypergeometric function ; see.
![{\ displaystyle k \ geq 1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d30d7dcf305b7bce39d36df72fe3985b47aa9961)
![{\ displaystyle {} _ {m} F_ {n} (a_ {1}, \ ldots, a_ {m}; b_ {1}, \ ldots, b_ {n}; x)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e7b65f3ffae847d80b560d1df8eb7a8d6f966371)
The corresponding alternating series also converge to the following limit values:
![{\ displaystyle {\ begin {aligned} \ sum _ {n = 1} ^ {\ infty} {\ frac {(-1) ^ {n}} {\ binom {2n} {n}}} & = {\ frac {1} {25}} \ left (5 + 4 {\ sqrt {5}} \ cdot \ operatorname {arcsch} (2) \ right) & = & \, 0 {,} 37216357638560161555577 \ ldots \\\ sum _ {n = 1} ^ {\ infty} {\ frac {(-1) ^ {n}} {n {\ binom {2n} {n}}}} & = {\ frac {2} {5}} {\ sqrt {5}} \ cdot \ operatorname {arcsch} (2) & = & \; 0 {,} 430408940964 \ ldots \\\ sum _ {n = 1} ^ {\ infty} {\ frac {(- 1) ^ {n}} {n ^ {2} {\ binom {2n} {n}}}} & = 2 \ left (\ operatorname {arcsch} (2) \ right) ^ {2} & = & \ ; 0 {,} 463129641154 \ ldots \\\ sum _ {n = 1} ^ {\ infty} {\ frac {(-1) ^ {n}} {n ^ {3} {\ binom {2n} {n }}}} & = {\ frac {2} {5}} \ zeta (3) & = & \; 0 {,} 48082276126 \ ldots \ end {aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0616ef46e2ac1b5478801868ca151ee5d8f1a540)
see. Episode A086465 in OEIS , episode A086466 in OEIS , episode A086467 in OEIS , episode A086468 in OEIS .
In general, the following can be written:
![{\ displaystyle \ sum _ {n = 1} ^ {\ infty} {\ frac {(-1) ^ {n}} {n ^ {k} {\ binom {2n} {n}}}} = {\ frac {1} {2}} \, \ cdot \, {} _ {k + 1} F_ {k} \ left (\ underbrace {1, \ ldots, 1} _ {k + 1}; {\ tfrac { 3} {2}}, \ underbrace {2, \ ldots, 2} _ {k-1}; {\ tfrac {-1} {4}} \ right).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c6ba390d5eea900bea19dfbac88a524839fd5ef6)
Related terms
The Catalan numbers are closely related to the mean binomial coefficients . You are given by
![C_ {n}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0301812adb392070d834ca2df4ed97f1cf132f33)
![{\ displaystyle C_ {n} = {\ frac {1} {n + 1}} {2n \ choose n}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7d16a3d3295935d6095a14c7b39b7d2171ff9e7a)
generalization
In Pascal's triangle, only the lines with an even-numbered index have a clear middle entry, whereas the lines with an odd-numbered index have two entries in the middle. However, since these two entries always match, they are occasionally included in the definition of the mean binomial coefficient, which is then:
-
for .![{\ displaystyle m \ in \ mathbb {N} _ {0}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7fd16ef926b19751e63d1b03b6090f09a492af88)
The first definition is obtained by looking at the even numbers here .
![m](https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc)
Web links
Individual evidence
-
^ VH Moll: Some Questions in the Evaluation of Definite Integrals. MAA Short Course, San Antonio, TX. Jan. 2006. Archived copy ( memento of the original from April 2, 2008 in the Internet Archive ) Info: The archive link was inserted automatically and has not yet been checked. Please check the original and archive link according to the instructions and then remove this notice.
@1@ 2Template: Webachiv / IABot / crd.lbl.gov
-
^ S. Plouffe: The Art of Inspired Guessing. Aug 7, 1998; http://www.lacim.uqam.ca/~plouffe/inspired.html