Parameter transformation

from Wikipedia, the free encyclopedia

In analysis, a parameter transformation is a continuous and strictly monotonic mapping that changes the parameter of a path .

Formal definition

Are and two ways and is a continuous and strictly monotonic function with

for all , therefore ,

this is what is called a parameter transformation. One then also calls a reparameterization of means .

If it increases strictly monotonically, the parameter transformation is called orientation- true. If the parameter transformation is strictly monotonically decreasing, it is called orientation reversal.

If and the inverse function are continuously differentiable , then one calls a -parameter transformation.

properties

  • The parameter transformation changes the path, but not the associated curve .
  • The path is rectifiable exactly when it is rectifiable. In this case the path lengths from and are equal.

literature

  • Otto Forster : Analysis 2 . Differential calculus in R n , ordinary differential equations. 8th edition. Vieweg + Teubner Verlag, Wiesbaden 2008, ISBN 978-3-8348-0575-1 , p. 44-46 .

Individual evidence

  1. ^ Otto Forster : Analysis 2 . Differential calculus in R n , ordinary differential equations. 8th edition. Vieweg + Teubner Verlag, Wiesbaden 2008, ISBN 978-3-8348-0575-1 , p. 44 .
  2. Florian Modler, Martin Kreh: Tutorial Analysis 2 and Lineare Algebra 2 . Mathematics explained and commented on by students for students. 2011, ISBN 978-3-8274-2895-0 , pp. 139 .
  3. ^ Otto Forster : Analysis 2 . Differential calculus in IRn, ordinary differential equations. 9th edition. Vieweg + Teubner Verlag, 2011, ISBN 978-3-8348-1231-5 , pp. 48 .
  4. Harro Heuser : Textbook of Analysis . Part 2. 13th edition. Teubner Verlag, 2004, ISBN 3-519-62232-7 , pp. 360 .