Sedenion

from Wikipedia, the free encyclopedia
?

The Sedenions (symbol ) are 16-dimensional hyper-complex numbers . They arise from the application of the doubling process from the octonions .

The multiplication of the sedions is neither commutative nor alternative (and therefore not associative ). It is only potency-associative and flexible . Furthermore, the sedions fulfill the Jordan identity and therefore form a non-commutative Jordan algebra . Sedenions have zero divisors .

Each Sedenion is a real linear combination of the units , where :

multiplication

A possible multiplication table for the units is:

1 e 1 e 2 e 3 e 4 e 5 e 6 e 7 e 8 e 9 e 10 e 11 e 12 e 13 e 14 e 15
1 1 e 1 e 2 e 3 e 4 e 5 e 6 e 7 e 8 e 9 e 10 e 11 e 12 e 13 e 14 e 15
e 1 e 1 −1 e 3 −e 2 e 5 −e 4 −e 7 e 6 e 9 −e 8 −e 11 e 10 −e 13 e 12 e 15 −e 14
e 2 e 2 −e 3 −1 e 1 e 6 e 7 −e 4 −e 5 e 10 e 11 −e 8 −e 9 −e 14 −e 15 e 12 e 13
e 3 e 3 e 2 −e 1 −1 e 7 −e 6 e 5 −e 4 e 11 −e 10 e 9 −e 8 −e 15 e 14 −e 13 e 12
e 4 e 4 −e 5 −e 6 −e 7 −1 e 1 e 2 e 3 e 12 e 13 e 14 e 15 −e 8 −e 9 −e 10 −e 11
e 5 e 5 e 4 −e 7 e 6 −e 1 −1 −e 3 e 2 e 13 −e 12 e 15 −e 14 e 9 −e 8 e 11 −e 10
e 6 e 6 e 7 e 4 −e 5 −e 2 e 3 −1 −e 1 e 14 −e 15 −e 12 e 13 e 10 −e 11 −e 8 e 9
e 7 e 7 −e 6 e 5 e 4 −e 3 −e 2 e 1 −1 e 15 e 14 −e 13 −e 12 e 11 e 10 −e 9 −e 8
e 8 e 8 −e 9 −e 10 −e 11 −e 12 −e 13 −e 14 −e 15 −1 e 1 e 2 e 3 e 4 e 5 e 6 e 7
e 9 e 9 e 8 −e 11 e 10 −e 13 e 12 e 15 −e 14 −e 1 −1 −e 3 e 2 −e 5 e 4 e 7 −e 6
e 10 e 10 e 11 e 8 −e 9 −e 14 −e 15 e 12 e 13 −e 2 e 3 −1 −e 1 −e 6 −e 7 e 4 e 5
e 11 e 11 −e 10 e 9 e 8 −e 15 e 14 −e 13 e 12 −e 3 −e 2 e 1 −1 −e 7 e 6 −e 5 e 4
e 12 e 12 e 13 e 14 e 15 e 8 −e 9 −e 10 −e 11 −e 4 e 5 e 6 e 7 −1 −e 1 −e 2 −e 3
e 13 e 13 −e 12 e 15 −e 14 e 9 e 8 e 11 −e 10 −e 5 −e 4 e 7 −e 6 e 1 −1 e 3 −e 2
e 14 e 14 −e 15 −e 12 e 13 e 10 −e 11 e 8 e 9 −e 6 −e 7 −e 4 e 5 e 2 −e 3 −1 e 1
e 15 e 15 e 14 −e 13 −e 12 e 11 e 10 −e 9 e 8 −e 7 e 6 −e 5 −e 4 e 3 e 2 −e 1 −1

The left column is to be read as the first or left factor, the top line as the second or right factor:, but see also anti-commutativity .

It applies

Zero divisor

The table shows that the sedions have zero divisors:

The space of the zero divisors with norm 1 is homeomorphic to the compact form of the exceptional Lie group G 2 .

Individual evidence

  1. ^ R. Guillermo Moreno (1997): The zero divisors of the Cayley-Dickson algebras over the real numbers , arxiv : q-alg / 9710013 .