Sedenion
The Sedenions (symbol ) are 16-dimensional hyper-complex numbers . They arise from the application of the doubling process from the octonions .
The multiplication of the sedions is neither commutative nor alternative (and therefore not associative ). It is only potency-associative and flexible . Furthermore, the sedions fulfill the Jordan identity and therefore form a non-commutative Jordan algebra . Sedenions have zero divisors .
Each Sedenion is a real linear combination of the units , where :
multiplication
A possible multiplication table for the units is:
⋅ | 1 | e 1 | e 2 | e 3 | e 4 | e 5 | e 6 | e 7 | e 8 | e 9 | e 10 | e 11 | e 12 | e 13 | e 14 | e 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | e 1 | e 2 | e 3 | e 4 | e 5 | e 6 | e 7 | e 8 | e 9 | e 10 | e 11 | e 12 | e 13 | e 14 | e 15 |
e 1 | e 1 | −1 | e 3 | −e 2 | e 5 | −e 4 | −e 7 | e 6 | e 9 | −e 8 | −e 11 | e 10 | −e 13 | e 12 | e 15 | −e 14 |
e 2 | e 2 | −e 3 | −1 | e 1 | e 6 | e 7 | −e 4 | −e 5 | e 10 | e 11 | −e 8 | −e 9 | −e 14 | −e 15 | e 12 | e 13 |
e 3 | e 3 | e 2 | −e 1 | −1 | e 7 | −e 6 | e 5 | −e 4 | e 11 | −e 10 | e 9 | −e 8 | −e 15 | e 14 | −e 13 | e 12 |
e 4 | e 4 | −e 5 | −e 6 | −e 7 | −1 | e 1 | e 2 | e 3 | e 12 | e 13 | e 14 | e 15 | −e 8 | −e 9 | −e 10 | −e 11 |
e 5 | e 5 | e 4 | −e 7 | e 6 | −e 1 | −1 | −e 3 | e 2 | e 13 | −e 12 | e 15 | −e 14 | e 9 | −e 8 | e 11 | −e 10 |
e 6 | e 6 | e 7 | e 4 | −e 5 | −e 2 | e 3 | −1 | −e 1 | e 14 | −e 15 | −e 12 | e 13 | e 10 | −e 11 | −e 8 | e 9 |
e 7 | e 7 | −e 6 | e 5 | e 4 | −e 3 | −e 2 | e 1 | −1 | e 15 | e 14 | −e 13 | −e 12 | e 11 | e 10 | −e 9 | −e 8 |
e 8 | e 8 | −e 9 | −e 10 | −e 11 | −e 12 | −e 13 | −e 14 | −e 15 | −1 | e 1 | e 2 | e 3 | e 4 | e 5 | e 6 | e 7 |
e 9 | e 9 | e 8 | −e 11 | e 10 | −e 13 | e 12 | e 15 | −e 14 | −e 1 | −1 | −e 3 | e 2 | −e 5 | e 4 | e 7 | −e 6 |
e 10 | e 10 | e 11 | e 8 | −e 9 | −e 14 | −e 15 | e 12 | e 13 | −e 2 | e 3 | −1 | −e 1 | −e 6 | −e 7 | e 4 | e 5 |
e 11 | e 11 | −e 10 | e 9 | e 8 | −e 15 | e 14 | −e 13 | e 12 | −e 3 | −e 2 | e 1 | −1 | −e 7 | e 6 | −e 5 | e 4 |
e 12 | e 12 | e 13 | e 14 | e 15 | e 8 | −e 9 | −e 10 | −e 11 | −e 4 | e 5 | e 6 | e 7 | −1 | −e 1 | −e 2 | −e 3 |
e 13 | e 13 | −e 12 | e 15 | −e 14 | e 9 | e 8 | e 11 | −e 10 | −e 5 | −e 4 | e 7 | −e 6 | e 1 | −1 | e 3 | −e 2 |
e 14 | e 14 | −e 15 | −e 12 | e 13 | e 10 | −e 11 | e 8 | e 9 | −e 6 | −e 7 | −e 4 | e 5 | e 2 | −e 3 | −1 | e 1 |
e 15 | e 15 | e 14 | −e 13 | −e 12 | e 11 | e 10 | −e 9 | e 8 | −e 7 | e 6 | −e 5 | −e 4 | e 3 | e 2 | −e 1 | −1 |
The left column is to be read as the first or left factor, the top line as the second or right factor:, but
see also anti-commutativity .
It applies
Zero divisor
The table shows that the sedions have zero divisors:
The space of the zero divisors with norm 1 is homeomorphic to the compact form of the exceptional Lie group G 2 .
Individual evidence
- ^ R. Guillermo Moreno (1997): The zero divisors of the Cayley-Dickson algebras over the real numbers , arxiv : q-alg / 9710013 .