Fixed point set for entire functions
The fixed point theorem for whole functions is a theorem of complex analysis , which goes back to a work by the French mathematician Pierre Fatou from 1926. It was rediscovered by the American mathematician Paul C. Rosenbloom in 1948 and subsequently further generalized.
The theorem is a consequence of Picard's Little Theorem .
Formulation of the sentence
"The chained function always has a fixed point for a whole function , unless a translation is with ."
Demarcation
In general, entire functions themselves are “free of fixed points”, ie they have no fixed points.
A simple example of this is provided by the function , which is definitely "free of fixed points" because the complex exponential function has no zeros .
literature
Original work
- Detlef Bargmann, Walter Bergweiler: Periodic points and normal families . In: Proc. Amer. Math. Soc . tape 129 , 2001, p. 2881-2888 ( MR1840089 ).
- Pierre Fatou: Sur l'itération des fonctions transcendantes Entières . In: Acta Math . tape 47 , 1926, pp. 337-370 ( MR1555220 ).
- Paul C. Rosenbloom : L'itération des fonctions entières . In: CR Acad. Sci. Paris . tape 227 , 1948, pp. 382-383 ( MR0026691 ).
- PC Rosenbloom: The fix points of entire functions . In: Medd. Lunds Univ. Mat. Sem. Tome Supplémentaire . 1952, p. 186-192 ( MR0051916 ).
Monographs
- Robert B. Burckel: An Introduction to Classical Complex Analysis . Birkhäuser Verlag, Basel [u. a.] 1979, ISBN 3-7643-0989-X .
- Reinhold Remmert , Georg Schumacher: Function theory 2 (= Springer textbook - basic knowledge of mathematics ). 3rd, revised edition. Springer Verlag, Berlin [u. a.] 2007, ISBN 978-3-540-40432-3 .
Web link
- Link to the further article by Bargmann and Bergweiler (PDF; 180 kB)
Individual evidence
- ↑ Fatou: Sur l'itération des fonctions transcendantes Entières . In: Acta Math. Band 47 , p. 345 .
- ↑ Burckel: pp. 433, 458, 559.
- ↑ Rosenbloom: L'iteration des fonctions entières . In: CR Acad. Sci. Paris . tape 227 , p. 382-383 .
- ↑ Rosenbloom: The fix points of entire functions . In: Medd. Lunds Univ. Mat. Sem. Tome Supplémentaire . 1952, p. 186 ff .
- ↑ Burckel: p. 433.
- ↑ Remmert, Schumacher: pp. 233-234.