Fixed point set for entire functions

from Wikipedia, the free encyclopedia

The fixed point theorem for whole functions is a theorem of complex analysis , which goes back to a work by the French mathematician Pierre Fatou from 1926. It was rediscovered by the American mathematician Paul C. Rosenbloom in 1948 and subsequently further generalized.

The theorem is a consequence of Picard's Little Theorem .

Formulation of the sentence

"The chained function   always has a fixed point for a whole function , unless     a translation is   with   ."    

Demarcation

In general, entire functions     themselves are “free of fixed points”, ie they have no fixed points.

A simple example of this is provided by the function   , which is definitely "free of fixed points" because the complex exponential function has   no zeros .  

literature

Original work

  • Detlef Bargmann, Walter Bergweiler: Periodic points and normal families . In: Proc. Amer. Math. Soc . tape 129 , 2001, p. 2881-2888 ( MR1840089 ).
  • Pierre Fatou: Sur l'itération des fonctions transcendantes Entières . In: Acta Math . tape 47 , 1926, pp. 337-370 ( MR1555220 ).
  • Paul C. Rosenbloom : L'itération des fonctions entières . In: CR Acad. Sci. Paris . tape 227 , 1948, pp. 382-383 ( MR0026691 ).
  • PC Rosenbloom: The fix points of entire functions . In: Medd. Lunds Univ. Mat. Sem. Tome Supplémentaire . 1952, p. 186-192 ( MR0051916 ).

Monographs

  • Robert B. Burckel: An Introduction to Classical Complex Analysis . Birkhäuser Verlag, Basel [u. a.] 1979, ISBN 3-7643-0989-X .
  • Reinhold Remmert , Georg Schumacher: Function theory 2 (=  Springer textbook - basic knowledge of mathematics ). 3rd, revised edition. Springer Verlag, Berlin [u. a.] 2007, ISBN 978-3-540-40432-3 .

Web link

Individual evidence

  1. Fatou: Sur l'itération des fonctions transcendantes Entières . In: Acta Math. Band 47 , p. 345 .
  2. Burckel: pp. 433, 458, 559.
  3. Rosenbloom: L'iteration des fonctions entières . In: CR Acad. Sci. Paris . tape 227 , p. 382-383 .
  4. Rosenbloom: The fix points of entire functions . In: Medd. Lunds Univ. Mat. Sem. Tome Supplémentaire . 1952, p. 186 ff .
  5. Burckel: p. 433.
  6. Remmert, Schumacher: pp. 233-234.