Lydersen method
The Lydersen method is a group contribution method for estimating the critical quantities , and . The Lydersen method is the model for many newer models according to Joback , Ambrose, Constantinou and Gani u. a. When estimating the critical temperature, the Lydersen method is based on Guldberg's rule , which relates the critical temperature to the normal boiling point.
Determining equations
- Critical temperature:
- Critical pressure:
- Critical Volume:
is the normal boiling point , the molar mass , are group contributions (different for the individual sizes) for functional groups of a molecule .
Group contributions
group | G i (T c ) | G i (P c ) | G i (V c ) | group | G i (T c ) | G i (P c ) | G i (V c ) | |
---|---|---|---|---|---|---|---|---|
-CH 3 , -CH 2 - | 0.020 | 0.227 | 55.0 | > CH | 0.012 | 0.210 | 51.0 | |
–C < | - | 0.210 | 41.0 | = CH 2 , = CH | 0.018 | 0.198 | 45.0 | |
= C <, = C = | - | 0.198 | 36.0 | = C – H, = C– | 0.005 | 0.153 | 36.0 | |
–CH 2 - (ring) | 0.013 | 0.184 | 44.5 | > CH– (ring) | 0.012 | 0.192 | 46.0 | |
> C <(ring) | −0.007 | 0.154 | 31.0 | = CH -, = C <, = C = (ring) | 0.011 | 0.154 | 37.0 | |
–F | 0.018 | 0.224 | 18.0 | -Cl | 0.017 | 0.320 | 49.0 | |
–Br | 0.010 | 0.500 | 70.0 | –I | 0.012 | 0.830 | 95.0 | |
-OH | 0.082 | 0.060 | 18.0 | -OH (aromatic) | 0.031 | −0.020 | 3.0 | |
-O- | 0.021 | 0.160 | 20.0 | –O– (ring) | 0.014 | 0.120 | 8.0 | |
> C = O | 0.040 | 0.290 | 60.0 | > C = O (ring) | 0.033 | 0.200 | 50.0 | |
HC = O– | 0.048 | 0.330 | 73.0 | -COOH | 0.085 | 0.400 | 80.0 | |
-COO- | 0.047 | 0.470 | 80.0 | -NH 2 | 0.031 | 0.095 | 28.0 | |
> NH | 0.031 | 0.135 | 37.0 | > NH (ring) | 0.024 | 0.090 | 27.0 | |
> N | 0.014 | 0.170 | 42.0 | > N– (ring) | 0.007 | 0.130 | 32.0 | |
-CN | 0.060 | 0.360 | 80.0 | -NO 2 | 0.055 | 0.420 | 78.0 | |
–SH, –S– | 0.015 | 0.270 | 55.0 | –S– (ring) | 0.008 | 0.240 | 45.0 | |
= S | 0.003 | 0.240 | 47.0 | > Si < | 0.030 | 0.540 | - | |
-B < | 0.030 | - | - |
Sample calculation
Acetone breaks down into two different fragments, a carbonyl group and two methyl groups. The following calculation results for the critical volume:
Values of 215.90 cm 3 , 230.5 cm 3 and 209.0 cm 3 can be found in the literature .
Individual evidence
- ↑ Lydersen aL, "Estimation of Critical Properties of Organic Compounds", University of wisconsin College Engineering, Eng. Exp. Stn. Rep. 3, Madison, Wisconsin
- ↑ K. G Joback, R. C Reid: Estimation of pure-component properties from group-contributions . In: Chemical Engineering Communications . tape 57 , no. 1 , 1987, pp. 233-243 .
- ↑ D. Ambrose, Teddington (England). Div. of Chemical Standards National Physical Lab .: Correlation and estimation of vapor-liquid critical properties. Part 1: Critical temperatures of organic compounds . Rep.No. 92. National Physical Lab., Teddington (England). Div. of Chemical Standards, 1978, p. 1-35 .
- ↑ Leonidas Constantinou, Rafiqul Gani: New group contribution method for estimating properties of pure compounds . In: AIChE Journal . tape 40 , no. 10 , October 1994, p. 1697-1710 , doi : 10.1002 / aic.690401011 .
- ↑ Dortmund database
- ↑ AN Campbell, RM Chatterjee: The critical constants and orthobaric densities of acetone, chloroform, benzene, and carbon tetrachloride . In: Canadian Journal of Chemistry . tape 47 , no. 20 , October 15, 1969, p. 3893-3898 , doi : 10.1139 / v69-646 .
- ^ W. Herz, E. Neukirch: On Knowledge of the Critical State . In: Z.Phys.Chem. (Leipzig) . tape 104 , 1923, pp. 433-450 .
- ↑ Kenneth A. Kobe, Horace R. Crawford, Robert W. Stephenson: Industrial Design Data - Critical Properties and Vapor Presesures of Some Ketones . In: Industrial & Engineering Chemistry . tape 47 , no. 9 , September 1955, p. 1767-1772 , doi : 10.1021 / ie50549a025 .