Lydersen method

from Wikipedia, the free encyclopedia

The Lydersen method is a group contribution method for estimating the critical quantities , and . The Lydersen method is the model for many newer models according to Joback , Ambrose, Constantinou and Gani u. a. When estimating the critical temperature, the Lydersen method is based on Guldberg's rule , which relates the critical temperature to the normal boiling point.

Determining equations

  • Critical temperature:
  • Critical pressure:
  • Critical Volume:

is the normal boiling point , the molar mass , are group contributions (different for the individual sizes) for functional groups of a molecule .

Group contributions

group G i (T c ) G i (P c ) G i (V c ) group G i (T c ) G i (P c ) G i (V c )
-CH 3 , -CH 2 - 0.020 0.227 55.0 > CH 0.012 0.210 51.0
–C < - 0.210 41.0 = CH 2 , = CH 0.018 0.198 45.0
= C <, = C = - 0.198 36.0 = C – H, = C– 0.005 0.153 36.0
–CH 2 - (ring) 0.013 0.184 44.5 > CH– (ring) 0.012 0.192 46.0
> C <(ring) −0.007 0.154 31.0 = CH -, = C <, = C = (ring) 0.011 0.154 37.0
–F 0.018 0.224 18.0 -Cl 0.017 0.320 49.0
–Br 0.010 0.500 70.0 –I 0.012 0.830 95.0
-OH 0.082 0.060 18.0 -OH (aromatic) 0.031 −0.020 3.0
-O- 0.021 0.160 20.0 –O– (ring) 0.014 0.120 8.0
> C = O 0.040 0.290 60.0 > C = O (ring) 0.033 0.200 50.0
HC = O– 0.048 0.330 73.0 -COOH 0.085 0.400 80.0
-COO- 0.047 0.470 80.0 -NH 2 0.031 0.095 28.0
> NH 0.031 0.135 37.0 > NH (ring) 0.024 0.090 27.0
> N 0.014 0.170 42.0 > N– (ring) 0.007 0.130 32.0
-CN 0.060 0.360 80.0 -NO 2 0.055 0.420 78.0
–SH, –S– 0.015 0.270 55.0 –S– (ring) 0.008 0.240 45.0
= S 0.003 0.240 47.0 > Si < 0.030 0.540 -
-B < 0.030 - -

Sample calculation

Group assignment for acetone

Acetone breaks down into two different fragments, a carbonyl group and two methyl groups. The following calculation results for the critical volume:

Values ​​of 215.90 cm 3 , 230.5 cm 3 and 209.0 cm 3 can be found in the literature .

Individual evidence

  1. Lydersen aL, "Estimation of Critical Properties of Organic Compounds", University of wisconsin College Engineering, Eng. Exp. Stn. Rep. 3, Madison, Wisconsin
  2. K. G Joback, R. C Reid: Estimation of pure-component properties from group-contributions . In: Chemical Engineering Communications . tape 57 , no. 1 , 1987, pp. 233-243 .
  3. D. Ambrose, Teddington (England). Div. of Chemical Standards National Physical Lab .: Correlation and estimation of vapor-liquid critical properties. Part 1: Critical temperatures of organic compounds . Rep.No. 92. National Physical Lab., Teddington (England). Div. of Chemical Standards, 1978, p. 1-35 .
  4. Leonidas Constantinou, Rafiqul Gani: New group contribution method for estimating properties of pure compounds . In: AIChE Journal . tape 40 , no. 10 , October 1994, p. 1697-1710 , doi : 10.1002 / aic.690401011 .
  5. Dortmund database
  6. AN Campbell, RM Chatterjee: The critical constants and orthobaric densities of acetone, chloroform, benzene, and carbon tetrachloride . In: Canadian Journal of Chemistry . tape 47 , no. 20 , October 15, 1969, p. 3893-3898 , doi : 10.1139 / v69-646 .
  7. ^ W. Herz, E. Neukirch: On Knowledge of the Critical State . In: Z.Phys.Chem. (Leipzig) . tape 104 , 1923, pp. 433-450 .
  8. Kenneth A. Kobe, Horace R. Crawford, Robert W. Stephenson: Industrial Design Data - Critical Properties and Vapor Presesures of Some Ketones . In: Industrial & Engineering Chemistry . tape 47 , no. 9 , September 1955, p. 1767-1772 , doi : 10.1021 / ie50549a025 .