Joback method

from Wikipedia, the free encyclopedia

The Joback method (often also referred to as the Joback-Reid method ) allows the prediction of eleven important thermodynamic properties of pure substances exclusively from the molecular structure.

Basics

Group contribution method

Principle of a group contribution method

The Joback method is a group contribution method . This type of prediction method takes simple structural information of a chemical molecule, such as a list of functional groups , assigns parameters to those groups, and calculates thermophysical and transport properties as a function of the sum of these group parameters.

Joback assumed that there were no interactions between the groups and therefore only used additive group contributions and no contributions for intergroup interactions. Other methods, such as UNIFAC , which estimates mixture properties such as activity coefficients, or the Benson method , which estimates heat capacities, enthalpies and entropies of formation, also use interaction parameters in addition to the simple, purely additive contributions. The great advantage of the restriction to simple contributions is the small number of parameters required (one parameter for each group and property), while the number of interaction parameters increases sharply with increasing number of groups (1 for two groups, 3 for three, 6 for four, 45 for ten, and even twice as much if the interaction parameters are not symmetrical).

Nine of the properties predicted by the Joback model are temperature-independent quantities; most of them are simply calculated from the sum of the group contributions plus a summand.

Two of the properties are temperature-dependent: the ideal gas heat capacity and the dynamic viscosity of liquids. A cubic polynomial with four parameters is used for the heat capacity and a polynomial with only two parameters (straight line) for the liquid viscosity. In both cases, the equation parameters are determined from group amounts.

history

The Joback method is an extension of the Lydersen method and uses very similar groups, formulas and parameters for the properties that Lydersen already supported (critical temperature, critical pressure and critical volume).

Joback extended the model for further properties, certain new parameters and slightly modified the equations of the old Lydersen model.

Model strengths and weaknesses

Strengthen

The popularity of the Joback method derives essentially from the one group list that is the same for all properties. This allows all eleven supported properties to be predicted from a single analysis of a chemical structural formula.

In addition, the groups of the Joback model are kept very simple and can also be used with little chemical knowledge.

weaknesses

Systematic error of the Joback method (normal boiling point)

Recent developments in estimation methods have shown that the quality of the Joback method is limited. The original authors have already stated in their publication: “ High accuracy is not claimed, but the proposed methods are often as or more accurate than techniques in common use today .” (German for example: “High accuracy is not claimed, but they are proposed methods are often as precise or more precise than currently used methods. ")

The list of groups does not sufficiently cover many common components. In particular, aromatic substances are not differentiated from normal ring components. This is a serious problem because the properties of these classes of components differ significantly.

The database that Joback and Reid used to determine the group parameters was quite small and only covered a small number of different substances. The best database was achieved for normal boiling points (438 components) and the worst for the enthalpy of fusion (155 components). In addition, it is very difficult to predict the enthalpy of fusion using group contribution methods. Joback and Reid themselves therefore write that the accuracy of the estimation of the enthalpy of fusion is only very low. Current model developments have a much larger database due to the use of fact databases such as the Dortmund database or the DIPPR database.

The formula used to predict the normal boiling point shows another problem. Joback assumed that the contribution of groups in a homologous series like that of the alkanes remains constant. However, this is not a correct assumption. Instead of constant contributions, a decrease in contributions as the number of groups increases must be used. The formula that Joback selected leads to high deviations for small and large molecules and provides an acceptable estimate only for medium-sized components.

Formulas

In the following formulas denotes a group contribution. are added for each individual occurrence of a group. So if a group occurs three times, for example, its contribution is added three times.

size formula comment
Normal boiling point
Melting point
Critical temperature This equation requires a normal boiling point T b . If an experimental value is available, it is recommended that you use it. On the other hand, it is also possible to use a value estimated with the Joback method. However, this leads to a bigger error.
Critical pressure : Number of atoms in the molecular structure (including hydrogen)
Critical volume
Enthalpy of formation Ideal gas, 298 K
Gibbs energy of formation Ideal gas, 298 K
Heat capacity Ideal gas;
The Joback method uses a cubic polynomial with four parameters to describe the temperature dependence of the heat capacity of the ideal gas. The parameters are valid in the range from 273 K to 1000 K.
Enthalpy of evaporation at the normal boiling point
Enthalpy of fusion
Dynamic viscosity of the liquid : Molar mass ;
The Joback method uses two parameters to describe the temperature dependence of the liquid viscosity. The authors state that the parameters are valid up to a reduced temperature .

Group contributions

group T c P c V c T b T m H f G f a b c d H m H v a b
Critical point Phase transition
temperatures
Caloric
quantities
Heat capacity
ideal gas
Phase transition
enthalpies
Dynamic
viscosity
Non-ring groups
-CH3 0.0141 −0.0012 65 23.58 −5.10 -76.45 −43.96 1.95e + 1 −8.08E − 3 1.53E − 4 −9.67E − 8 0.908 2.373 548.29 −1.719
–CH 2 - 0.0189 0.0000 56 22.88 11.27 −20.64 8.42 −9.09E − 1 9.50E − 2 −5.44E − 5 1.19E-8 2,590 2.226 94.16 −0.199
> CH– 0.0164 0.0020 41 21.74 12.64 29.89 58.36 −2.30E + 1 2.04E − 1 −2.65E − 4 1.20E − 7 0.749 1.691 −322.15 1.187
> C < 0.0067 0.0043 27 18.25 46.43 82.23 116.02 −6.62E + 1 4.27E − 1 −6.41E − 4 3.01E − 7 −1.460 0.636 −573.56 2.307
= CH 2 0.0113 −0.0028 56 18.18 −4.32 −9.630 3.77 2.36E + 1 −3.81E − 2 1.72E − 4 −1.03E − 7 −0.473 1.724 495.01 −1.539
= CH– 0.0129 −0.0006 46 24.96 8.73 37.97 48.53 −8.00 1.05E − 1 −9.63E − 5 3.56E − 8 2.691 2.205 82.28 −0.242
= C < 0.0117 0.0011 38 24.14 11.14 83.99 92.36 −2.81E + 1 2.08E − 1 −3.06E − 4 1.46E − 7 3.063 2.138 n. v. n. v.
= C = 0.0026 0.0028 36 26.15 17.78 142.14 136.70 2.74E + 1 −5.57E − 2 1.01E − 4 −5.02E − 8 4,720 2,661 n. v. n. v.
≡CH 0.0027 −0.0008 46 9.20 −11.18 79.30 77.71 2.45E + 1 −2.71E − 2 1.11E − 4 −6.78E − 8 2,322 1.155 n. v. n. v.
≡C– 0.0020 0.0016 37 27.38 64.32 115.51 109.82 7.87 2.01E − 2 −8.33E − 6 1.39E-9 4.151 3.302 n. v. n. v.
Ring groups
–CH 2 - 0.0100 0.0025 48 27.15 7.75 −26.80 −3.68 −6.03 8.54E − 2 −8.00E − 6 −1.80E − 8 0.490 2,398 307.53 −0.798
> CH– 0.0122 0.0004 38 21.78 19.88 8.67 40.99 −2.05E + 1 1.62E − 1 −1.60E − 4 6.24E − 8 3.243 1,942 −394.29 1.251
> C < 0.0042 0.0061 27 21.32 60.15 79.72 87.88 −9.09E + 1 5.57E − 1 −9.00E − 4 4.69E − 7 −1.373 0.644 n. v. n. v.
= CH– 0.0082 0.0011 41 26.73 8.13 2.09 11.30 −2.14 5.74E − 2 −1.64E − 6 −1.59E − 8 1.101 2.544 259.65 −0.702
= C < 0.0143 0.0008 32 31.01 37.02 46.43 54.05 −8.25 1.01E − 1 −1.42E − 4 6.78E − 8 2,394 3.059 −245.74 0.912
Halogen groups
–F 0.0111 −0.0057 27 −0.03 −15.78 −251.92 −247.19 2.65E + 1 −9.13E − 2 1.91E − 4 −1.03E − 7 1.398 −0.670 n. v. n. v.
-Cl 0.0105 −0.0049 58 38.13 13.55 −71.55 −64.31 3.33E + 1 −9.63E − 2 1.87E − 4 −9.96E − 8 2.515 4,532 625.45 −1.814
–Br 0.0133 0.0057 71 66.86 43.43 −29.48 −38.06 2.86E + 1 −6.49E − 2 1.36E − 4 −7.45E − 8 3.603 6,582 738.91 −2.038
–I 0.0068 −0.0034 97 93.84 41.69 21.06 5.74 3.21E + 1 −6.41E − 2 1.26E − 4 −6.87E − 8 2.724 9.520 809.55 −2.224
Oxygen groups
–OH ( alcohols ) 0.0741 0.0112 28 92.88 44.45 −208.04 −189.20 2.57E + 1 −6.91E − 2 1.77E − 4 −9.88E − 8 2.406 16.826 2173.72 −5.057
-OH ( phenol ) 0.0240 0.0184 −25 76.34 82.83 −221.65 −197.37 −2.81 1.11E − 1 −1.16E − 4 4.94E-8 4,490 12,499 3018.17 −7.314
–O– (non-ring) 0.0168 0.0015 18th 22.42 22.23 −132.22 −105.00 2.55E + 1 −6.32E − 2 1.11E − 4 −5.48E − 8 1.188 2,410 122.09 −0.386
–O– (ring) 0.0098 0.0048 13 31.22 23.05 −138.16 −98.22 1.22E + 1 −1.26E − 2 6.03E − 5 −3.86E − 8 5,879 4,682 440.24 −0.953
> C = O (non-ring) 0.0380 0.0031 62 76.75 61.20 −133.22 −120.50 6.45 6.70E − 2 −3.57E − 5 2.86E-9 4.189 8,972 340.35 −0.350
> C = O (ring) 0.0284 0.0028 55 94.97 75.97 −164.50 −126.27 3.04E + 1 −8.29E − 2 2.36E − 4 −1.31E − 7 n. v. 6.645 n. v. n. v.
O = CH- (aldehyde) 0.0379 0.0030 82 72.24 36.90 −162.03 −143.48 3.09E + 1 −3.36E − 2 1.60E − 4 −9.88E − 8 3.197 9.093 740.92 −1.713
–COOH (acid) 0.0791 0.0077 89 169.09 155.50 −426.72 −387.87 2.41E + 1 4.27E − 2 8.04E − 5 −6.87E − 8 11.051 19,537 1317.23 −2.578
–COO– (ester) 0.0481 0.0005 82 81.10 53.60 −337.92 −301.95 2.45E + 1 4.02E − 2 4.02E − 5 −4.52E − 8 6,959 9.633 483.88 −0.966
= O (other than above) 0.0143 0.0101 36 −10.50 2.08 −247.61 −250.83 6.82 1.96E − 2 1.27E − 5 −1.78E − 8 3,624 5,909 675.24 −1.340
Nitrogen groups
-NH 2 0.0243 0.0109 38 73.23 66.89 −22.02 14.07 2.69E + 1 −4.12E − 2 1.64E − 4 −9.76E − 8 3.515 10.788 n. v. n. v.
> NH (non-ring) 0.0295 0.0077 35 50.17 52.66 53.47 89.39 −1.21 7.62E − 2 −4.86E − 5 1.05E − 8 5.099 6.436 n. v. n. v.
> NH (ring) 0.0130 0.0114 29 52.82 101.51 31.65 75.61 1.18E + 1 −2.30E − 2 1.07E − 4 −6.28E − 8 7.490 6,930 n. v. n. v.
> N– (non-ring) 0.0169 0.0074 9 11.74 48.84 123.34 163.16 −3.11E + 1 2.27E − 1 −3.20E − 4 1.46E − 7 4.703 1,896 n. v. n. v.
–N = (non-ring) 0.0255 −0.0099 n. v. 74.60 n. v. 23.61 n. v. n. v. n. v. n. v. n. v. n. v. 3.335 n. v. n. v.
–N = (ring) 0.0085 0.0076 34 57.55 68.40 93.70 119.66 5.69 −4.12E − 3 1.28E − 4 −8.88E − 8 3,649 6.528 n. v. n. v.
= NH n. v. n. v. n. v. 83.08 68.91 93.70 119.66 5.69 −4.12E − 3 1.28E − 4 −8.88-8 n. v. 12,169 n. v. n. v.
-CN 0.0496 −0.0101 91 125.66 59.89 88.43 89.22 3.65E + 1 −7.33E − 2 1.84E − 4 −1.03E − 7 2,414 12,851 n. v. n. v.
-NO 2 0.0437 0.0064 91 152.54 127.24 −66.57 −16.83 2.59E + 1 −3.74E − 3 1.29E − 4 −8.88E − 8 9,679 16.738 n. v. n. v.
Sulfur groups
–SH 0.0031 0.0084 63 63.56 20.09 −17.33 −22.99 3.53E + 1 −7.58E − 2 1.85E − 4 −1.03E − 7 2,360 6.884 n. v. n. v.
–S– (non-ring) 0.0119 0.0049 54 68.78 34.40 41.87 33.12 1.96E + 1 −5.61E − 3 4.02E − 5 −2.76E − 8 4.130 6.817 n. v. n. v.
–S– (ring) 0.0019 0.0051 38 52.10 79.93 39.10 27.76 1.67E + 1 4.81E − 3 2.77E − 5 −2.11E − 8 1.557 5.984 n. v. n. v.

Sample calculation

Structural formula of acetone

Acetone (propanone) is the simplest ketone and is divided into three groups according to the Joback method: two methyl groups (–CH 3 ) and one keto group (C = O). Since the methyl group occurs twice, its contribution is added twice.

-CH3 > C = O (non-ring)
property Number
of groups
Contribution Number
of groups
Contribution Calculated value unit
T c 2 0.0141 1 0.0380 0.0662 500.5590 K
P c 2 −1.20E − 03 1 3.10E-03 7.00E − 04 48.0250 bar
V c 2 65.0000 1 62.0000 192.0000 209.5000 cm 3 / mol
T b 2 23.5800 1 76.7500 123.9100 322.1100 K
T m 2 −5.1000 1 61.2000 51.0000 173.5000 K
H f 2 -76.4500 1 −133.2200 −286.1200 −217.8300 kJ / mol
G f 2 −43.9600 1 −120.5000 −208.4200 −154.5400 kJ / mol
C pa 2 1.95e + 01 1 6.45E + 00 4.55E + 01
C pb 2 −8.08E − 03 1 6.70E − 02 5.08E − 02
C pc 2 1.53E-04 1 −3.57E − 05 2.70E − 04
C pd 2 −9.67E − 08 1 2.86E-09 −1.91E − 07
C p at T = 300 K 75.3264 J / (mol K)
H m 2 0.9080 1 4.1890 6.0050 5.1250 kJ / mol
H v 2 2.3730 1 8.9720 13.7180 29.018 kJ / mol
η a 2 548.2900 1 340.3500 1436.9300
η b 2 −1.7190 1 −0.3500 −3.7880
η at T = 300 K 0.0002942 Pa s

Web links

Individual evidence

  1. a b K. G Joback, R. C Reid: Estimation of pure-component properties from group-contributions . In: Chemical Engineering Communications . tape 57 , no. 1 , 1987, pp. 233-243 .
  2. A. L Lydersen, R. A Greenkorn, O. A Hougen: Estimation of Critical Properties of Organic Compounds by the Method of Group Contributions . In: Engineering Experiment Station Report . University of Wisconsin, Madison, Wisconsin 1955.
  3. Leonidas Constantinou, Rafiqul Gani: New group contribution method for estimating properties of pure compounds . In: AIChE Journal . tape 40 , no. 10 , October 1994, p. 1697-1710 , doi : 10.1002 / aic.690401011 .
  4. Yash Nannoolal, Jürgen Rarey, Deresh Ramjugernath: Estimation of pure component properties: Part 2. Estimation of critical property data by group contribution . In: Fluid Phase Equilibria . tape 252 , no. 1–2 , February 1, 2007, pp. 1–27 , doi : 10.1016 / j.fluid.2006.11.014 .
  5. ^ SE Stein, RL Brown: Estimation of normal boiling points from group contributions . In: Journal of Chemical Information and Computer Sciences . tape 34 , no. 3 , April 1, 1994, pp. 581-587 , doi : 10.1021 / ci00019a016 .