In the theory of surfaces in three-dimensional Euclidean space , a field of differential geometry , the mean curvature is an important concept of curvature in addition to the Gaussian curvature .
R.
3
{\ displaystyle \ mathbb {R} ^ {3}}
definition
Let a regular area in and a point of this area be given. The mean curvature of the surface at this point is the arithmetic mean of the two main curvatures and . That is, the mean curvature is defined as
R.
3
{\ displaystyle \ mathbb {R} ^ {3}}
H
{\ displaystyle H}
k
1
{\ displaystyle k_ {1}}
k
2
{\ displaystyle k_ {2}}
H
: =
1
2
(
k
1
+
k
2
)
.
{\ displaystyle H: = {\ frac {1} {2}} (k_ {1} + k_ {2}).}
So-called minimum areas are of particular interest , for which or applies.
H
=
0
{\ displaystyle H = 0}
k
1
=
-
k
2
{\ displaystyle k_ {1} = - k_ {2}}
General can be the mean curvature for n-dimensional hyper-surfaces of the through define. Here is the Weingarten figure and denotes the trace of a matrix .
R.
n
+
1
{\ displaystyle \ mathbb {R} ^ {n + 1}}
H
: =
1
n
track
(
S.
)
{\ displaystyle H: = {\ tfrac {1} {n}} \ operatorname {track} (S)}
S.
{\ displaystyle S}
track
{\ displaystyle \ operatorname {track}}
calculation
Are , , and , , the coefficients of the first and second fundamental form of the surface, so applies the formula
E.
{\ displaystyle E}
F.
{\ displaystyle F}
G
{\ displaystyle G}
L.
{\ displaystyle L}
M.
{\ displaystyle M}
N
{\ displaystyle N}
H
=
L.
G
-
2
M.
F.
+
N
E.
2
(
E.
G
-
F.
2
)
{\ displaystyle H = {\ frac {LG-2MF + NE} {2 (EG-F ^ {2})}}}
If the area is parameterized isothermally, that is, if the coefficients of the first fundamental form and hold, then this formula is simplified to
E.
=
G
{\ displaystyle E = G}
F.
=
0
{\ displaystyle F = 0}
H
=
L.
+
N
2
E.
.
{\ displaystyle H = {\ frac {L + N} {2E}}.}
If the area under consideration is the graph of a function over the parameter range , i.e. for all , then applies to the mean curvature:
f
{\ displaystyle f}
U
{\ displaystyle U}
X
(
u
,
v
)
=
(
u
,
v
,
f
(
u
,
v
)
)
{\ displaystyle X (u, v) = (u, v, f (u, v))}
(
u
,
v
)
∈
U
{\ displaystyle (u, v) \ in U}
H
=
(
1
+
f
v
2
)
f
u
u
-
2
f
u
f
v
f
u
v
+
(
1
+
f
u
2
)
f
v
v
2
1
+
f
u
2
+
f
v
2
3
{\ displaystyle H = {\ frac {(1 + f_ {v} ^ {2}) f_ {uu} -2f_ {u} f_ {v} f_ {uv} + (1 + f_ {u} ^ {2} ) f_ {vv}} {2 {\ sqrt {1 + f_ {u} ^ {2} + f_ {v} ^ {2}}} ^ {3}}}}
.
Here and denote the first and , and the second partial derivatives of .
f
u
{\ displaystyle f_ {u}}
f
v
{\ displaystyle f_ {v}}
f
u
u
{\ displaystyle f_ {uu}}
f
u
v
{\ displaystyle f_ {uv}}
f
v
v
{\ displaystyle f_ {vv}}
f
{\ displaystyle f}
Examples
The surface of a sphere with a radius has the mean curvature .
r
{\ displaystyle r}
H
=
1
r
{\ displaystyle H = {\ tfrac {1} {r}}}
At any point on the curved surface of a straight circular cylinder with a radius , the mean curvature is the same
r
{\ displaystyle r}
H
=
1
2
r
{\ displaystyle H = {\ tfrac {1} {2r}}}
Other properties
The equation applies to an area
X
=
X
(
u
,
v
)
{\ displaystyle X = X (u, v)}
H
n
→
=
G
i
j
∇
i
∇
j
X
,
{\ displaystyle H {\ vec {n}} = g ^ {ij} \ nabla _ {i} \ nabla _ {j} X,}
with the unit normal , the first fundamental form and the covariant derivative.
n
→
{\ displaystyle {\ vec {n}}}
G
i
j
{\ displaystyle g_ {ij}}
∇
i
{\ displaystyle \ nabla _ {i}}
If a surface is parameterized isothermally, it satisfies Rellich's H-surface system
X
=
X
(
u
,
v
)
{\ displaystyle X = X (u, v)}
Δ
X
=
2
H
X
u
×
X
v
.
{\ displaystyle \ Delta X = 2HX_ {u} \ times X_ {v}.}
If the area is given as the level area of a function , then applies
F.
{\ displaystyle F}
2
H
=
-
div
n
→
=
-
div
∇
F.
|
∇
F.
|
.
{\ displaystyle 2H = - \ operatorname {div} {\ vec {n}} = - \ operatorname {div} {\ frac {\ nabla F} {| \ nabla F |}}.}
This is the divergence and the unit normal field. This formula is called the Bonnet formula and applies generally to n-dimensional hypersurfaces .
div
{\ displaystyle \ operatorname {div}}
n
→
{\ displaystyle {\ vec {n}}}
∇
F.
|
∇
F.
|
.
{\ displaystyle {\ tfrac {\ nabla F} {| \ nabla F |}}.}
literature
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">