Areatangens hyperbolicus  and areakotangens hyperbolicus  are the inverse functions  of the tangent hyperbolicus  and cotangent hyperbolicus  and thus area functions  .
Spellings:
  
    
      
        y 
        = 
        artanh 
         
        ( 
        x 
        ) 
        = 
        
          tanh 
          
            - 
            1 
           
         
         
        ( 
        x 
        ) 
       
     
    {\ displaystyle y = \ operatorname {artanh} (x) = \ tanh ^ {- 1} (x)} 
   
  
  
    
      
        y 
        = 
        arcoth 
         
        ( 
        x 
        ) 
        = 
        
          coth 
          
            - 
            1 
           
         
         
        ( 
        x 
        ) 
       
     
    {\ displaystyle y = \ operatorname {arcoth} (x) = \ coth ^ {- 1} (x)} 
   
  
 
The latter is used less often to avoid confusion with the reciprocal of the hyperbolic (co-) tangent. It is .
  
    
      
        artanh 
         
        ( 
        x 
        ) 
        = 
        
          tanh 
          
            - 
            1 
           
         
         
        ( 
        x 
        ) 
        ≠ 
        tanh 
         
        ( 
        x 
        
          ) 
          
            - 
            1 
           
         
        = 
        
          
            
              1 
              
                tanh 
                 
                ( 
                x 
                ) 
               
             
           
         
       
     
    {\ displaystyle \ operatorname {artanh} (x) = \ tanh ^ {- 1} (x) \ not = \ tanh (x) ^ {- 1} = {\ tfrac {1} {\ tanh (x)}} } 
   
 
Definitions  
Hyperbolic areatangens:
  
    
      
        artanh 
         
        ( 
        x 
        ) 
        : = 
        
          
            1 
            2 
           
         
        ln 
         
        
          ( 
          
            
              
                1 
                + 
                x 
               
              
                1 
                - 
                x 
               
             
           
          ) 
         
         
        
          f 
          
            
              
                u 
                ¨ 
               
             
           
          r 
         
         
        
          | 
         
        x 
        
          | 
         
        < 
        1 
       
     
    {\ displaystyle \ operatorname {artanh} (x): = {\ frac {1} {2}} \ ln \ left ({\ frac {1 + x} {1-x}} \ right) \ quad \ mathrm { f {\ ddot {u}} r} \ quad | x | <1} 
   
  
Hyperbolic areakotangent:
  
    
      
        arcoth 
         
        ( 
        x 
        ) 
        : = 
        
          
            1 
            2 
           
         
        ln 
         
        
          ( 
          
            
              
                x 
                + 
                1 
               
              
                x 
                - 
                1 
               
             
           
          ) 
         
         
        
          f 
          
            
              
                u 
                ¨ 
               
             
           
          r 
         
         
        
          | 
         
        x 
        
          | 
         
        > 
        1 
       
     
    {\ displaystyle \ operatorname {arcoth} (x): = {\ frac {1} {2}} \ ln \ left ({\ frac {x + 1} {x-1}} \ right) \ quad \ mathrm { f {\ ddot {u}} r} \ quad | x |> 1} 
   
  
Geometric definitions  
Geometric can be the Area hyperbolic tangent represented by the area in the plane containing the connection line between the coordinate origin and the hyperbola sweeps: Let and start and end point on the hyperbola, the surface of the link overlined.
  
    
      
        ( 
        x 
        , 
        y 
        ) 
        = 
        ( 
        0 
        , 
        0 
        ) 
       
     
    {\ displaystyle (x, y) = (0,0)} 
   
 
  
    
      
        
          x 
          
            2 
           
         
        - 
        
          y 
          
            2 
           
         
        = 
        1 
       
     
    {\ displaystyle x ^ {2} -y ^ {2} = 1} 
   
 
  
    
      
        ( 
        x 
        , 
        - 
        y 
        ) 
        = 
        
          ( 
          
            x 
            , 
            - 
            
              
                
                  x 
                  
                    2 
                   
                 
                - 
                1 
               
             
           
          ) 
         
       
     
    {\ displaystyle (x, -y) = \ left (x, - {\ sqrt {x ^ {2} -1}} \ right)} 
   
 
  
    
      
        ( 
        x 
        , 
        y 
        ) 
        = 
        
          ( 
          
            x 
            , 
            + 
            
              
                
                  x 
                  
                    2 
                   
                 
                - 
                1 
               
             
           
          ) 
         
       
     
    {\ displaystyle (x, y) = \ left (x, + {\ sqrt {x ^ {2} -1}} \ right)} 
   
 
  
    
      
        A. 
        = 
        artanh 
         
        
          ( 
          
            
              y 
              x 
             
           
          ) 
         
       
     
    {\ displaystyle A = \ operatorname {artanh} \ left ({\ frac {y} {x}} \ right)} 
   
 
properties  
   
Graph of the function artanh (x)
 
  
 
   
Graph of the function arcoth (x)
 
  
 
  
 
 
Hyperbolic areatangens
 
Hyperbolic areakotangent
 
 
Domain of definition
 
  
    
      
        - 
        1 
        < 
        x 
        < 
        1 
       
     
    {\ displaystyle -1 <x <1} 
   
  
 
  
    
      
        - 
        ∞ 
        < 
        x 
        < 
        - 
        1 
       
     
    {\ displaystyle - \ infty <x <-1} 
   
   
  
    
      
        1 
        < 
        x 
        < 
        ∞ 
       
     
    {\ displaystyle 1 <x <\ infty} 
   
  
 
 
Range of values
 
  
    
      
        - 
        ∞ 
        < 
        f 
        ( 
        x 
        ) 
        < 
        ∞ 
       
     
    {\ displaystyle - \ infty <f (x) <\ infty} 
   
  
 
  
    
      
        - 
        ∞ 
        < 
        f 
        ( 
        x 
        ) 
        < 
        ∞ 
        ; 
         
        f 
        ( 
        x 
        ) 
        ≠ 
        0 
       
     
    {\ displaystyle - \ infty <f (x) <\ infty; \; f (x) \ neq 0} 
   
  
 
 
periodicity
 
no
 
no
 
 
monotony
 
strictly monotonously increasing
 
no
 
 
Symmetries
 
odd function: 
  
    
      
        f 
        ( 
        - 
        x 
        ) 
        = 
        - 
        f 
        ( 
        x 
        ) 
       
     
    {\ displaystyle f (-x) = - f (x)} 
   
  
 
odd function: 
  
    
      
        f 
        ( 
        - 
        x 
        ) 
        = 
        - 
        f 
        ( 
        x 
        ) 
       
     
    {\ displaystyle f (-x) = - f (x)} 
   
  
 
 
Asymptotes 
 
  
    
      
        x 
        = 
        1 
        : 
         
        f 
        ( 
        x 
        ) 
        → 
        ∞ 
        
           For  
         
        x 
        → 
        1 
       
     
    {\ displaystyle x = 1 \ colon \, f (x) \ to \ infty {\ text {for}} x \ to 1} 
   
 
  
    
      
        x 
        = 
        - 
        1 
        : 
         
        f 
        ( 
        x 
        ) 
        → 
        - 
        ∞ 
        
           For  
         
        x 
        → 
        - 
        1 
       
     
    {\ displaystyle x = -1 \ colon \, f (x) \ to - \ infty {\ text {for}} x \ to -1} 
   
  
 
  
    
      
        y 
        = 
        0 
        : 
         
        f 
        ( 
        x 
        ) 
        → 
        0 
        
           For  
         
        x 
        → 
        ± 
        ∞ 
       
     
    {\ displaystyle y = 0 \ colon \, f (x) \ to 0 {\ text {for}} x \ to \ pm \ infty} 
   
  
 
 
zeropoint 
 
  
    
      
        x 
        = 
        0 
       
     
    {\ displaystyle x = 0} 
   
  
 
no
 
 
Jump points
 
no
 
no
 
 
Poles
 
  
    
      
        x 
        = 
        ± 
        1 
       
     
    {\ displaystyle x = \ pm 1} 
   
  
 
  
    
      
        x 
        = 
        ± 
        1 
       
     
    {\ displaystyle x = \ pm 1} 
   
  
 
 
Extremes
 
no
 
no
 
 
Turning points 
 
  
    
      
        x 
        = 
        0 
       
     
    {\ displaystyle x = 0} 
   
  
 
no
 
 
 
Series developments  
Taylor  and Laurent series of  the two functions are
  
    
      
        
          
            
              
                artanh 
                 
                ( 
                x 
                ) 
               
              
                 
                = 
                
                  ∑ 
                  
                    k 
                    = 
                    0 
                   
                  
                    ∞ 
                   
                 
                
                  
                    
                      x 
                      
                        2 
                        k 
                        + 
                        1 
                       
                     
                    
                      2 
                      k 
                      + 
                      1 
                     
                   
                 
               
              
                = 
                x 
                + 
                
                  
                    1 
                    3 
                   
                 
                
                  x 
                  
                    3 
                   
                 
                + 
                
                  
                    1 
                    5 
                   
                 
                
                  x 
                  
                    5 
                   
                 
                + 
                
                  
                    1 
                    7th 
                   
                 
                
                  x 
                  
                    7th 
                   
                 
                + 
                ... 
               
              
                
                 
               
             
            
              
                arcoth 
                 
                ( 
                x 
                ) 
               
              
                 
                = 
                
                  ∑ 
                  
                    k 
                    = 
                    1 
                   
                  
                    ∞ 
                   
                 
                
                  
                    
                      x 
                      
                        - 
                        ( 
                        2 
                        k 
                        - 
                        1 
                        ) 
                       
                     
                    
                      2 
                      k 
                      - 
                      1 
                     
                   
                 
               
              
                = 
                
                  x 
                  
                    - 
                    1 
                   
                 
                + 
                
                  
                    1 
                    3 
                   
                 
                
                  x 
                  
                    - 
                    3 
                   
                 
                + 
                
                  
                    1 
                    5 
                   
                 
                
                  x 
                  
                    - 
                    5 
                   
                 
                + 
                
                  
                    1 
                    7th 
                   
                 
                
                  x 
                  
                    - 
                    7th 
                   
                 
                + 
                ... 
               
              
                
                 
               
             
            
               
              
                 
                = 
                
                  ∑ 
                  
                    k 
                    = 
                    0 
                   
                  
                    ∞ 
                   
                 
                
                  
                    1 
                    
                      ( 
                      2 
                      k 
                      + 
                      1 
                      ) 
                      ⋅ 
                      
                        x 
                        
                          2 
                          k 
                          + 
                          1 
                         
                       
                     
                   
                 
               
              
                = 
                
                  
                    1 
                    x 
                   
                 
                + 
                
                  
                    1 
                    
                      3 
                      
                        x 
                        
                          3 
                         
                       
                     
                   
                 
                + 
                
                  
                    1 
                    
                      5 
                      
                        x 
                        
                          5 
                         
                       
                     
                   
                 
                + 
                
                  
                    1 
                    
                      7th 
                      
                        x 
                        
                          7th 
                         
                       
                     
                   
                 
                + 
                ... 
               
              
                
                 
               
             
           
         
       
     
    {\ displaystyle {\ begin {alignedat} {2} \ operatorname {artanh} (x) & = \ sum _ {k = 0} ^ {\ infty} {\ frac {x ^ {2k + 1}} {2k + 1}} & = x + {\ frac {1} {3}} x ^ {3} + {\ frac {1} {5}} x ^ {5} + {\ frac {1} {7}} x ^ {7} + \ ldots & {} \\\ operatorname {arcoth} (x) & = \ sum _ {k = 1} ^ {\ infty} {\ frac {x ^ {- (2k-1)}} { 2k-1}} & = x ^ {- 1} + {\ frac {1} {3}} x ^ {- 3} + {\ frac {1} {5}} x ^ {- 5} + {\ frac {1} {7}} x ^ {- 7} + \ ldots & {} \\ & = \ sum _ {k = 0} ^ {\ infty} {\ frac {1} {(2k + 1) \ cdot x ^ {2k + 1}}} & = {\ frac {1} {x}} + {\ frac {1} {3x ^ {3}}} + {\ frac {1} {5x ^ {5} }} + {\ frac {1} {7x ^ {7}}} + \ ldots & {} \ end {alignedat}}} 
   
  
Derivatives  
  
    
      
        
          
            
              d 
             
            
              
                d 
               
              x 
             
           
         
        artanh 
         
        ( 
        x 
        ) 
        = 
        
          
            1 
            
              1 
              - 
              
                x 
                
                  2 
                 
               
             
           
         
         
        ; 
         
        
          | 
         
        x 
        
          | 
         
        < 
        1 
       
     
    {\ displaystyle {\ frac {\ mathrm {d}} {\ mathrm {d} x}} \ operatorname {artanh} (x) = {\ frac {1} {1-x ^ {2}}} \ ,; \ quad | x | <1} 
   
  
  
    
      
        
          
            
              d 
             
            
              
                d 
               
              x 
             
           
         
        arcoth 
         
        ( 
        x 
        ) 
        = 
        
          
            1 
            
              1 
              - 
              
                x 
                
                  2 
                 
               
             
           
         
         
        ; 
         
        
          | 
         
        x 
        
          | 
         
        > 
        1 
       
     
    {\ displaystyle {\ frac {\ mathrm {d}} {\ mathrm {d} x}} \ operatorname {arcoth} (x) = {\ frac {1} {1-x ^ {2}}} \ ,; \ quad | x |> 1} 
   
  
Integrals  
The antiderivatives are:
  
    
      
        ∫ 
        artanh 
         
        ( 
        x 
        ) 
         
        
          d 
         
        x 
        = 
        x 
        ⋅ 
        artanh 
         
        ( 
        x 
        ) 
        + 
        
          
            1 
            2 
           
         
        ln 
         
        
          ( 
          
            1 
            - 
            
              x 
              
                2 
               
             
           
          ) 
         
        + 
        C. 
       
     
    {\ displaystyle \ int \ operatorname {artanh} (x) \, \ mathrm {d} x = x \ cdot \ operatorname {artanh} (x) + {\ frac {1} {2}} \ ln \ left (1 -x ^ {2} \ right) + C} 
   
  
  
    
      
        ∫ 
        arcoth 
         
        ( 
        x 
        ) 
         
        
          d 
         
        x 
        = 
        x 
        ⋅ 
        arcoth 
         
        ( 
        x 
        ) 
        + 
        
          
            1 
            2 
           
         
        ln 
         
        
          ( 
          
            
              x 
              
                2 
               
             
            - 
            1 
           
          ) 
         
        + 
        C. 
       
     
    {\ displaystyle \ int \ operatorname {arcoth} (x) \, \ mathrm {d} x = x \ cdot \ operatorname {arcoth} (x) + {\ frac {1} {2}} \ ln \ left (x ^ {2} -1 \ right) + C} 
   
  
Addition theorems  
  
    
      
        artanh 
         
        ( 
        x 
        ) 
        ± 
        artanh 
         
        ( 
        y 
        ) 
        = 
        artanh 
         
        
          ( 
          
            
              
                
                  x 
                  ± 
                  y 
                 
                
                  1 
                  ± 
                  x 
                  y 
                 
               
             
              
           
          ) 
         
       
     
    {\ displaystyle \ operatorname {artanh} (x) \ pm \ operatorname {artanh} (y) = \ operatorname {artanh} \ left ({\ frac {x \ pm y} {1 \ pm xy}} \ \ right) } 
   
  
  
    
      
        arcoth 
         
        ( 
        x 
        ) 
        ± 
        arcoth 
         
        ( 
        y 
        ) 
        = 
        arcoth 
         
        
          ( 
          
            
              
                
                  1 
                  ± 
                  x 
                  y 
                 
                
                  x 
                  ± 
                  y 
                 
               
             
              
           
          ) 
         
       
     
    {\ displaystyle \ operatorname {arcoth} (x) \ pm \ operatorname {arcoth} (y) = \ operatorname {arcoth} \ left ({\ frac {1 \ pm xy} {x \ pm y}} \ \ right) } 
   
  
 
See also  
Web links  
 
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">