Arkussekans and Arkuskosekans are cyclometric functions. They are the inverse functions of the secant function or the coscan function and thus arc functions . Since the secant and cosecant functions are periodic, the reversal of the secant is limited to and the cosecant is limited to. The arccosecant is denoted by and the arccosecant by . The spellings and are used less often, but especially in English ; but they do not mean that or are the reciprocal values of and .
[
0
,
π
]
{\ displaystyle \ lbrack 0 \ ,, \, \ pi \ rbrack}
[
-
π
/
2
,
π
/
2
]
{\ displaystyle \ lbrack - {\ pi / 2}, \, \ pi / 2 \ rbrack}
arcsec
(
x
)
{\ displaystyle \ operatorname {arcsec} \, (x)}
arccsc
(
x
)
{\ displaystyle \ operatorname {arccsc} \, (x)}
sec
-
1
(
x
)
{\ displaystyle \ sec ^ {- 1} (x)}
csc
-
1
{\ displaystyle \ csc ^ {- 1}}
arcsec
{\ displaystyle \ operatorname {arcsec}}
arccsc
{\ displaystyle \ operatorname {arccsc}}
sec
{\ displaystyle \ sec}
csc
{\ displaystyle \ csc}
properties
Arc secans
Arccosecans
Function graph
Domain of definition
-
∞
<
x
≤
-
1
,
1
≤
x
<
+
∞
{\ displaystyle - \ infty <x \ leq -1 \ ,, \, 1 \ leq x <+ \ infty}
-
∞
<
x
≤
-
1
,
1
≤
x
<
+
∞
{\ displaystyle - \ infty <x \ leq -1 \ ,, \, 1 \ leq x <+ \ infty}
Range of values
0
≤
f
(
x
)
≤
π
{\ displaystyle 0 \ leq f (x) \ leq \ pi}
-
π
2
≤
f
(
x
)
≤
π
2
{\ displaystyle - {\ frac {\ pi} {2}} \ leq f (x) \ leq {\ frac {\ pi} {2}}}
monotony
Strictly increasing monotonously in both sections
Strictly decreasing monotonically in both sections
Symmetries
Point symmetry to the point
x
=
0
,
y
=
π
2
{\ displaystyle x = 0, y = {\ frac {\ pi} {2}}}
Odd function
arccsc
(
x
)
=
-
arccsc
(
-
x
)
{\ displaystyle \ operatorname {arccsc} \, (x) = - \ operatorname {arccsc} \, (- x)}
Asymptotes
f
(
x
)
→
π
2
{\ displaystyle f (x) \ to {\ frac {\ pi} {2}}}
For
x
→
±
∞
{\ displaystyle x \ to \ pm \ infty}
f
(
x
)
→
0
{\ displaystyle f (x) \ to 0}
For
x
→
±
∞
{\ displaystyle x \ to \ pm \ infty}
zeropoint
x
=
1
{\ displaystyle x = 1 \! \,}
no
Jump points
no
no
Poles
no
no
Extremes
Minimum at , maximum at
(
1
|
0
)
{\ displaystyle \ left (1 | 0 \ right)}
(
-
1
|
π
)
{\ displaystyle \ left (-1 | \ pi \ right)}
Minimum at , maximum at
(
-
1
|
-
π
2
)
{\ displaystyle \ left (-1 | - {\ frac {\ pi} {2}} \ right)}
(
1
|
π
2
)
{\ displaystyle \ left (1 | {\ frac {\ pi} {2}} \ right)}
Turning points
no
no
Series developments
The series expansions of arcsecans and arcsecans are:
arcsec
(
x
)
=
π
2
-
∑
k
=
0
∞
(
2
k
-
1
)
!
!
x
-
(
2
k
+
1
)
(
2
k
)
!
!
⋅
(
2
k
+
1
)
≈
π
2
-
x
-
1
-
1
6th
x
-
3
-
3
40
x
-
5
{\ displaystyle \ operatorname {arcsec} (x) = {\ frac {\ pi} {2}} - \ sum _ {k = 0} ^ {\ infty} {\ frac {(2k-1) !! x ^ {- (2k + 1)}} {(2k) !! \ cdot (2k + 1)}} \ approx {\ frac {\ pi} {2}} - x ^ {- 1} - {\ frac {1 } {6}} x ^ {- 3} - {\ frac {3} {40}} x ^ {- 5}}
arccsc
(
x
)
=
∑
k
=
0
∞
(
2
k
-
1
)
!
!
x
-
(
2
k
+
1
)
(
2
k
)
!
!
⋅
(
2
k
+
1
)
=
1
x
+
1
2
⋅
3
x
3
+
3
2
⋅
4th
⋅
5
x
5
+
3
⋅
5
2
⋅
4th
⋅
6th
⋅
7th
x
7th
+
...
{\ displaystyle \ operatorname {arccsc} (x) = \ sum _ {k = 0} ^ {\ infty} {\ frac {(2k-1) !! x ^ {- (2k + 1)}} {(2k ) !! \ cdot (2k + 1)}} = {\ frac {1} {x}} \; + \; {\ frac {1} {2 \ cdot 3x ^ {3}}} \; + \; {\ frac {3} {2 \! \ cdot \! 4 \ cdot 5x ^ {5}}} \; + \; {\ frac {3 \! \ cdot \! 5} {2 \! \ cdot \! 4 \! \ Cdot \! 6 \ cdot 7x ^ {7}}} \; + \; \ ldots}
Integral representations
The following integral representations exist for the arccosecans and arccosecans:
arcsec
(
x
)
=
∫
1
x
d
t
t
t
2
-
1
{\ displaystyle \ operatorname {arcsec} (x) = \ int \ limits _ {1} ^ {x} {\ frac {\ mathrm {d} t} {t {\ sqrt {t ^ {2} -1}} }}}
arccsc
(
x
)
=
∫
x
∞
d
t
t
t
2
-
1
{\ displaystyle \ operatorname {arccsc} (x) = \ int \ limits _ {x} ^ {\ infty} {\ frac {\ mathrm {d} t} {t {\ sqrt {t ^ {2} -1} }}}}
Derivatives
The derivatives are given by:
d
d
x
arcsec
(
x
)
=
1
|
x
|
x
2
-
1
{\ displaystyle {\ frac {\ mathrm {d}} {\ mathrm {d} x}} \ operatorname {arcsec} (x) = {\ frac {1} {| x | {\ sqrt {x ^ {2} -1}}}}}
d
d
x
arccsc
(
x
)
=
-
1
|
x
|
x
2
-
1
{\ displaystyle {\ frac {\ mathrm {d}} {\ mathrm {d} x}} \ operatorname {arccsc} (x) = - {\ frac {1} {| x | {\ sqrt {x ^ {2 }-1}}}}}
Integrals
∫
arcsec
(
x
)
d
x
=
x
⋅
arcsec
(
x
)
-
so-called
(
x
)
⋅
ln
(
|
x
+
x
2
-
1
|
)
+
C.
=
x
⋅
arcsec
(
x
)
-
arcosh
(
|
x
|
)
+
C.
{\ displaystyle \ int \ operatorname {arcsec} (x) \, \ mathrm {d} x = x \ cdot \ operatorname {arcsec} (x) - \ operatorname {sgn} (x) \ cdot \ ln \ left (\ left | x + {\ sqrt {x ^ {2} -1}} \ right | \ right) + C = x \ cdot \ operatorname {arcsec} (x) - \ operatorname {arcosh} (| x |) + C}
∫
arccsc
(
x
)
d
x
=
x
⋅
arccsc
(
x
)
+
so-called
(
x
)
⋅
ln
(
|
x
+
x
2
-
1
|
)
+
C.
=
x
⋅
arccsc
(
x
)
+
arcosh
(
|
x
|
)
+
C.
{\ displaystyle \ int \ operatorname {arccsc} (x) \, \ mathrm {d} x = x \ cdot \ operatorname {arccsc} (x) + \ operatorname {sgn} (x) \ cdot \ ln \ left (\ left | x + {\ sqrt {x ^ {2} -1}} \ right | \ right) + C = x \ cdot \ operatorname {arccsc} (x) + \ operatorname {arcosh} (| x |) + C}
Conversion and relationships with other cyclometric functions
arcsec
(
x
)
=
arccos
(
1
x
)
{\ displaystyle \ operatorname {arcsec} \, (x) = \ arccos \ left ({\ frac {1} {x}} \ right)}
arccsc
(
x
)
=
arcsin
(
1
x
)
{\ displaystyle \ operatorname {arccsc} \, (x) = \ arcsin \ left ({\ frac {1} {x}} \ right)}
See also
Web links
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">