A NOR gate  (from English  : n  ot or  - not or  , or from English nor  - (neither -) nor; also called Peirce function  after Charles S. Peirce  ) is a logic gate  with two or more inputs A, B, ... and an output Y, between which there is a logical NOT OR  link . A NOR gate outputs 1 (w) when all inputs are 0 (f). In all other cases, i. H. if at least one input is 1, a 0 is output.
The literature uses the following notations for the NOR operation of variables A  and B  :
  
    
      
        A. 
         
        NOR 
         
        B. 
         
        A. 
        ↓ 
        B. 
         
        ¬ 
        
          ( 
          
            A. 
            ∨ 
            B. 
           
          ) 
         
         
        A. 
         
         
         
         
        
          
            ∨ 
            ¯ 
           
         
         
         
         
         
        B. 
         
        
          
            
              A. 
              ∨ 
              B. 
             
            ¯ 
           
         
         
        
          
            
              A. 
              + 
              B. 
             
            ¯ 
           
         
         
        A. 
         
         
         
         
        
          
            + 
            ¯ 
           
         
         
         
         
         
        B. 
         
        ¬ 
        
          ( 
          
            A. 
            + 
            B. 
           
          ) 
         
       
     
    {\ displaystyle A \, \ operatorname {NOR} \, B \ qquad A \ downarrow B \ qquad \ neg \ left (A \ lor B \ right) \ qquad A \; \; \! \! {\ overline {\ lor}} \; \; \! \! B \ qquad {\ overline {A \ lor B}} \ qquad {\ overline {A + B}} \ qquad A \; \; \! \! {\ overline { +}} \; \; \! \! B \ qquad \ neg \ left (A + B \ right)} 
   
  
Overview 
 
function
 
Circuit symbol
 
Truth table 
 
Relay logic
 
 
IEC  60617-12
 
US ANSI  91-1984
 
DIN  40700 (before 1976)
 
 
  
    
      
        Y 
        = 
        
          
            
              A. 
              ∨ 
              B. 
             
            ¯ 
           
         
       
     
    {\ displaystyle Y = {\ overline {A \ vee B}}} 
   
 
  
    
      
        Y 
        = 
        A. 
         
         
         
         
        
          
            ∨ 
            ¯ 
           
         
         
         
         
         
        B. 
       
     
    {\ displaystyle Y = A \; \; \! \! {\ overline {\ vee}} \; \; \! \! B} 
   
 
  
    
      
        Y 
        = 
        
          
            
              A. 
              + 
              B. 
             
            ¯ 
           
         
       
     
    {\ displaystyle Y = {\ overline {A + B}}} 
   
 
  
    
      
        Y 
        = 
        A. 
        ↓ 
        B. 
       
     
    {\ displaystyle Y = A \ downarrow B} 
   
 
  
    
      
        Y 
        = 
        A. 
        ∖ 
        B. 
       
     
    {\ displaystyle Y = A \ backslash B} 
   
  
 
 
 
 
A.
 
B.
 
Y = A ⊽ B
 
 
0 
0 
1 
 
 
0 
1 
0 
 
 
1 
0 
0 
 
 
1 
1 
0 
 
 
 
 
 
 
 
realization  
The electronic implementation takes place, for example (with positive logic  ) with two (or correspondingly more) switches ( transistors  ) connected in parallel , which connect output Q to ground (logic 0) as soon as one of them is switched on. If all are off, the ground connection is interrupted and the output Q is at positive potential (logical 1).
		
			
			
Functional principle of a NOR gate
  
    
      
        Q 
        = 
        x 
         
        NOR 
         
        y 
       
     
    {\ displaystyle Q = x \, \ operatorname {NOR} \, y} 
   
  
			 
		  
		 
		
			
			
Realization of a NOR gate in CMOS  technology (unfavorable to implement, since the two PMOS  transistors are connected in series and are already more high-resistance than  NMOS  transistors with the same chip area )
  
    
      
        a 
         
         
         
         
        
          
            ∨ 
            ¯ 
           
         
         
         
         
         
        b 
        = 
        a 
         
        NOR 
         
        b 
       
     
    {\ displaystyle a \; \; \! \! {\ overline {\ lor}} \; \; \! \! b = a \, \ operatorname {NOR} \, b} 
   
  
			 
		  
 
Logic synthesis  
According to the following logical equivalence  , a NOR operation can also be built up from NAND gates  alone :
  
    
      
        x 
         
         
         
         
        
          
            ∨ 
            ¯ 
           
         
         
         
         
         
        y 
        = 
        
          [ 
          
            
              ( 
              
                x 
                 
                 
                 
                 
                
                  
                    ∧ 
                    ¯ 
                   
                 
                 
                 
                 
                 
                x 
               
              ) 
             
             
             
             
             
            
              
                ∧ 
                ¯ 
               
             
             
             
             
             
            
              ( 
              
                y 
                 
                 
                 
                 
                
                  
                    ∧ 
                    ¯ 
                   
                 
                 
                 
                 
                 
                y 
               
              ) 
             
           
          ] 
         
         
         
         
         
        
          
            ∧ 
            ¯ 
           
         
         
         
         
         
        
          [ 
          
            
              ( 
              
                x 
                 
                 
                 
                 
                
                  
                    ∧ 
                    ¯ 
                   
                 
                 
                 
                 
                 
                x 
               
              ) 
             
             
             
             
             
            
              
                ∧ 
                ¯ 
               
             
             
             
             
             
            
              ( 
              
                y 
                 
                 
                 
                 
                
                  
                    ∧ 
                    ¯ 
                   
                 
                 
                 
                 
                 
                y 
               
              ) 
             
           
          ] 
         
       
     
    {\ displaystyle x \; \; \! \! {\ overline {\ lor}} \; \; \! \! y = \ left [\ left (x \; \; \! \! {\ overline {\ land}} \; \; \! \! x \ right) \; \; \! \! {\ overline {\ land}} \; \; \! \! \ left (y \; \; \! \ ! {\ overline {\ land}} \; \; \! \! y \ right) \ right] \; \; \! \! {\ overline {\ land}} \; \; \! \! \ left [\ left (x \; \; \! \! {\ overline {\ land}} \; \; \! \! x \ right) \; \; \! \! {\ overline {\ land}} \ ; \; \! \! \ left (y \; \; \! \! {\ overline {\ land}} \; \; \! \! y \ right) \ right]} 
   
  
Logical links and their implementation using NOR gates: 
With the Peirce function alone, all two-valued truth functions can be represented, i.e. every Boolean function is equivalent to a formula that only contains the NOR function. Because of this property of functional completeness  , the peirce function is called a basis of the two-digit logical functions (another basis is the NAND  function).
NOT ( negation  , not)
 
  
    
      
        
          
            x 
            ¯ 
           
         
       
     
    {\ displaystyle {\ overline {x}}} 
   
  
 
  
    
      
        ≡ 
       
     
    {\ displaystyle \ equiv} 
   
  
 
  
    
      
        x 
         
         
         
         
        
          
            ∨ 
            ¯ 
           
         
         
         
         
         
        x 
       
     
    {\ displaystyle x \; \; \! \! {\ overline {\ lor}} \; \; \! \! x} 
   
  
 
 
 
 
 
 
 
 
 
 
 
AND ( conjunction  , and)
 
  
    
      
        x 
        ∧ 
        y 
       
     
    {\ displaystyle x \ land y} 
   
  
 
  
    
      
        ≡ 
       
     
    {\ displaystyle \ equiv} 
   
  
 
  
    
      
        
          ( 
          
            x 
             
             
             
             
            
              
                ∨ 
                ¯ 
               
             
             
             
             
             
            x 
           
          ) 
         
         
         
         
         
        
          
            ∨ 
            ¯ 
           
         
         
         
         
         
        
          ( 
          
            y 
             
             
             
             
            
              
                ∨ 
                ¯ 
               
             
             
             
             
             
            y 
           
          ) 
         
       
     
    {\ displaystyle \ left (x \; \; \! \! {\ overline {\ lor}} \; \; \! \! x \ right) \; \; \! \! {\ overline {\ lor} } \; \; \! \! \ left (y \; \; \! \! {\ overline {\ lor}} \; \; \! \! y \ right)} 
   
  
 
 
NAND (not-and)
 
  
    
      
        x 
        
          
            ∧ 
            ¯ 
           
         
        y 
       
     
    {\ displaystyle x {\ overline {\ land}} y} 
   
  
 
  
    
      
        ≡ 
       
     
    {\ displaystyle \ equiv} 
   
  
 
  
    
      
        
          [ 
          
            
              ( 
              
                x 
                 
                 
                 
                 
                
                  
                    ∨ 
                    ¯ 
                   
                 
                 
                 
                 
                 
                x 
               
              ) 
             
             
             
             
             
            
              
                ∨ 
                ¯ 
               
             
             
             
             
             
            
              ( 
              
                y 
                 
                 
                 
                 
                
                  
                    ∨ 
                    ¯ 
                   
                 
                 
                 
                 
                 
                y 
               
              ) 
             
           
          ] 
         
         
         
         
         
        
          
            ∨ 
            ¯ 
           
         
         
         
         
         
        
          [ 
          
            
              ( 
              
                x 
                 
                 
                 
                 
                
                  
                    ∨ 
                    ¯ 
                   
                 
                 
                 
                 
                 
                x 
               
              ) 
             
             
             
             
             
            
              
                ∨ 
                ¯ 
               
             
             
             
             
             
            
              ( 
              
                y 
                 
                 
                 
                 
                
                  
                    ∨ 
                    ¯ 
                   
                 
                 
                 
                 
                 
                y 
               
              ) 
             
           
          ] 
         
       
     
    {\ displaystyle \ left [\ left (x \; \; \! \! {\ overline {\ lor}} \; \; \! \! x \ right) \; \; \! \! {\ overline { \ lor}} \; \; \! \! \ left (y \; \; \! \! {\ overline {\ lor}} \; \; \! \! y \ right) \ right] \; \ ; \! \! {\ overline {\ lor}} \; \; \! \! \ left [\ left (x \; \; \! \! {\ overline {\ lor}} \; \; \! \! x \ right) \; \; \! \! {\ overline {\ lor}} \; \; \! \! \ left (y \; \; \! \! {\ overline {\ lor}} \; \; \! \! y \ right) \ right]} 
   
  
 
 
OR ( disjunction  , or)
 
  
    
      
        x 
        ∨ 
        y 
       
     
    {\ displaystyle x \ lor y} 
   
  
 
  
    
      
        ≡ 
       
     
    {\ displaystyle \ equiv} 
   
  
 
  
    
      
        
          ( 
          
            x 
             
             
             
             
            
              
                ∨ 
                ¯ 
               
             
             
             
             
             
            y 
           
          ) 
         
         
         
         
         
        
          
            ∨ 
            ¯ 
           
         
         
         
         
         
        
          ( 
          
            x 
             
             
             
             
            
              
                ∨ 
                ¯ 
               
             
             
             
             
             
            y 
           
          ) 
         
       
     
    {\ displaystyle \ left (x \; \; \! \! {\ overline {\ lor}} \; \; \! \! y \ right) \; \; \! \! {\ overline {\ lor} } \; \; \! \! \ left (x \; \; \! \! {\ overline {\ lor}} \; \; \! \! y \ right)} 
   
  
 
 
NOR (not-or)
 
  
    
      
        x 
         
         
         
         
        
          
            ∨ 
            ¯ 
           
         
         
         
         
         
        y 
       
     
    {\ displaystyle x \; \; \! \! {\ overline {\ lor}} \; \; \! \! y} 
   
  
 
  
    
      
        ≡ 
       
     
    {\ displaystyle \ equiv} 
   
  
 
  
    
      
        x 
         
         
         
         
        
          
            ∨ 
            ¯ 
           
         
         
         
         
         
        y 
       
     
    {\ displaystyle x \; \; \! \! {\ overline {\ lor}} \; \; \! \! y} 
   
  
 
 
XOR  (Exclusive-Or)
 
  
    
      
        x 
         
         
         
         
        
          
            ∨ 
            _ 
           
         
         
         
         
         
        y 
       
     
    {\ displaystyle x \; \; \! \! {\ underline {\ lor}} \; \; \! \! y} 
   
  
 
  
    
      
        ≡ 
       
     
    {\ displaystyle \ equiv} 
   
  
 
  
    
      
        
          ( 
          
            x 
             
             
             
             
            
              
                ∨ 
                ¯ 
               
             
             
             
             
             
            y 
           
          ) 
         
         
         
         
         
        
          
            ∨ 
            ¯ 
           
         
         
         
         
         
        
          [ 
          
            
              ( 
              
                x 
                 
                 
                 
                 
                
                  
                    ∨ 
                    ¯ 
                   
                 
                 
                 
                 
                 
                x 
               
              ) 
             
             
             
             
             
            
              
                ∨ 
                ¯ 
               
             
             
             
             
             
            
              ( 
              
                y 
                 
                 
                 
                 
                
                  
                    ∨ 
                    ¯ 
                   
                 
                 
                 
                 
                 
                y 
               
              ) 
             
           
          ] 
         
       
     
    {\ displaystyle \ left (x \; \; \! \! {\ overline {\ lor}} \; \; \! \! y \ right) \; \; \! \! {\ overline {\ lor} } \; \; \! \! \ left [\ left (x \; \; \! \! {\ overline {\ lor}} \; \; \! \! x \ right) \; \; \! \! {\ overline {\ lor}} \; \; \! \! \ left (y \; \; \! \! {\ overline {\ lor}} \; \; \! \! y \ right) \ right]} 
   
  
 
 
XNOR  (Exclusive-Not-Or)
 
  
    
      
        x 
         
         
         
         
        
          
            
               
              
                ∨ 
                _ 
               
             
            ¯ 
           
         
         
         
         
         
        y 
       
     
    {\ displaystyle x \; \; \! \! {\ overline {\ underline {\ lor}}} \; \; \! \! y} 
   
  
 
  
    
      
        ≡ 
       
     
    {\ displaystyle \ equiv} 
   
  
 
  
    
      
        
          [ 
          
            
              ( 
              
                x 
                 
                 
                 
                 
                
                  
                    ∨ 
                    ¯ 
                   
                 
                 
                 
                 
                 
                y 
               
              ) 
             
             
             
             
             
            
              
                ∨ 
                ¯ 
               
             
             
             
             
             
            x 
           
          ] 
         
         
         
         
         
        
          
            ∨ 
            ¯ 
           
         
         
         
         
         
        
          [ 
          
            
              ( 
              
                x 
                 
                 
                 
                 
                
                  
                    ∨ 
                    ¯ 
                   
                 
                 
                 
                 
                 
                y 
               
              ) 
             
             
             
             
             
            
              
                ∨ 
                ¯ 
               
             
             
             
             
             
            y 
           
          ] 
         
       
     
    {\ displaystyle \ left [\ left (x \; \; \! \! {\ overline {\ lor}} \; \; \! \! y \ right) \; \; \! \! {\ overline { \ lor}} \; \; \! \! x \ right] \; \; \! \! {\ overline {\ lor}} \; \; \! \! \ left [\ left (x \; \ ; \! \! {\ overline {\ lor}} \; \; \! \! y \ right) \; \; \! \! {\ overline {\ lor}} \; \; \! \! y \ right]} 
   
  
 
 
 
 
 
 
 
 
 
 
 
implication 
 
  
    
      
        x 
        → 
        y 
       
     
    {\ displaystyle x \ rightarrow y} 
   
  
 
  
    
      
        ≡ 
       
     
    {\ displaystyle \ equiv} 
   
  
 
  
    
      
        
          [ 
          
            
              ( 
              
                x 
                 
                 
                 
                 
                
                  
                    ∨ 
                    ¯ 
                   
                 
                 
                 
                 
                 
                x 
               
              ) 
             
             
             
             
             
            
              
                ∨ 
                ¯ 
               
             
             
             
             
             
            y 
           
          ] 
         
         
         
         
         
        
          
            ∨ 
            ¯ 
           
         
         
         
         
         
        
          [ 
          
            
              ( 
              
                x 
                 
                 
                 
                 
                
                  
                    ∨ 
                    ¯ 
                   
                 
                 
                 
                 
                 
                x 
               
              ) 
             
             
             
             
             
            
              
                ∨ 
                ¯ 
               
             
             
             
             
             
            y 
           
          ] 
         
       
     
    {\ displaystyle \ left [\ left (x \; \; \! \! {\ overline {\ lor}} \; \; \! \! x \ right) \; \; \! \! {\ overline { \ lor}} \; \; \! \! y \ right] \; \; \! \! {\ overline {\ lor}} \; \; \! \! \ left [\ left (x \; \ ; \! \! {\ overline {\ lor}} \; \; \! \! x \ right) \; \; \! \! {\ overline {\ lor}} \; \; \! \! y \ right]} 
   
  
 
 
 
 
  
    
      
        x 
        ← 
        y 
       
     
    {\ displaystyle x \ leftarrow y} 
   
  
 
  
    
      
        ≡ 
       
     
    {\ displaystyle \ equiv} 
   
  
 
  
    
      
        
          [ 
          
            x 
             
             
             
             
            
              
                ∨ 
                ¯ 
               
             
             
             
             
             
            
              ( 
              
                y 
                 
                 
                 
                 
                
                  
                    ∨ 
                    ¯ 
                   
                 
                 
                 
                 
                 
                y 
               
              ) 
             
           
          ] 
         
         
         
         
         
        
          
            ∨ 
            ¯ 
           
         
         
         
         
         
        
          [ 
          
            x 
             
             
             
             
            
              
                ∨ 
                ¯ 
               
             
             
             
             
             
            
              ( 
              
                y 
                 
                 
                 
                 
                
                  
                    ∨ 
                    ¯ 
                   
                 
                 
                 
                 
                 
                y 
               
              ) 
             
           
          ] 
         
       
     
    {\ displaystyle \ left [x \; \; \! \! {\ overline {\ lor}} \; \; \! \! \ left (y \; \; \! \! {\ overline {\ lor} } \; \; \! \! y \ right) \ right] \; \; \! \! {\ overline {\ lor}} \; \; \! \! \ left [x \; \; \! \! {\ overline {\ lor}} \; \; \! \! \ left (y \; \; \! \! {\ overline {\ lor}} \; \; \! \! y \ right) \ right]} 
   
  
 
 
equivalence 
 
  
    
      
        x 
        ↔ 
        y 
       
     
    {\ displaystyle x \ leftrightarrow y} 
   
  
 
  
    
      
        ≡ 
       
     
    {\ displaystyle \ equiv} 
   
  
 
  
    
      
        
          [ 
          
            
              ( 
              
                x 
                 
                 
                 
                 
                
                  
                    ∨ 
                    ¯ 
                   
                 
                 
                 
                 
                 
                y 
               
              ) 
             
             
             
             
             
            
              
                ∨ 
                ¯ 
               
             
             
             
             
             
            x 
           
          ] 
         
         
         
         
         
        
          
            ∨ 
            ¯ 
           
         
         
         
         
         
        
          [ 
          
            
              ( 
              
                x 
                 
                 
                 
                 
                
                  
                    ∨ 
                    ¯ 
                   
                 
                 
                 
                 
                 
                y 
               
              ) 
             
             
             
             
             
            
              
                ∨ 
                ¯ 
               
             
             
             
             
             
            y 
           
          ] 
         
       
     
    {\ displaystyle \ left [\ left (x \; \; \! \! {\ overline {\ lor}} \; \; \! \! y \ right) \; \; \! \! {\ overline { \ lor}} \; \; \! \! x \ right] \; \; \! \! {\ overline {\ lor}} \; \; \! \! \ left [\ left (x \; \ ; \! \! {\ overline {\ lor}} \; \; \! \! y \ right) \; \; \! \! {\ overline {\ lor}} \; \; \! \! y \ right]} 
   
  
 
 
 
 
 
 
 
 
 
 
 
Verum  (always true)
 
  
    
      
        ⊤ 
       
     
    {\ displaystyle \ top} 
   
  
 
  
    
      
        ≡ 
       
     
    {\ displaystyle \ equiv} 
   
  
 
  
    
      
        
          [ 
          
            
              ( 
              
                x 
                 
                 
                 
                 
                
                  
                    ∨ 
                    ¯ 
                   
                 
                 
                 
                 
                 
                x 
               
              ) 
             
             
             
             
             
            
              
                ∨ 
                ¯ 
               
             
             
             
             
             
            x 
           
          ] 
         
         
         
         
         
        
          
            ∨ 
            ¯ 
           
         
         
         
         
         
        
          [ 
          
            
              ( 
              
                x 
                 
                 
                 
                 
                
                  
                    ∨ 
                    ¯ 
                   
                 
                 
                 
                 
                 
                x 
               
              ) 
             
             
             
             
             
            
              
                ∨ 
                ¯ 
               
             
             
             
             
             
            x 
           
          ] 
         
       
     
    {\ displaystyle \ left [\ left (x \; \; \! \! {\ overline {\ lor}} \; \; \! \! x \ right) \; \; \! \! {\ overline { \ lor}} \; \; \! \! x \ right] \; \; \! \! {\ overline {\ lor}} \; \; \! \! \ left [\ left (x \; \ ; \! \! {\ overline {\ lor}} \; \; \! \! x \ right) \; \; \! \! {\ overline {\ lor}} \; \; \! \! x \ right]} 
   
  
 
 
Falsum  (always wrong)
 
  
    
      
        ⊥ 
       
     
    {\ displaystyle \ bot} 
   
  
 
  
    
      
        ≡ 
       
     
    {\ displaystyle \ equiv} 
   
  
 
  
    
      
        
          ( 
          
            x 
             
             
             
             
            
              
                ∨ 
                ¯ 
               
             
             
             
             
             
            x 
           
          ) 
         
         
         
         
         
        
          
            ∨ 
            ¯ 
           
         
         
         
         
         
        x 
       
     
    {\ displaystyle \ left (x \; \; \! \! {\ overline {\ lor}} \; \; \! \! x \ right) \; \; \! \! {\ overline {\ lor} } \; \; \! \! x} 
   
  
 
 
 
literature  
Ulrich Tietze, Christoph Schenk: Semiconductor circuit technology  . 12th edition. Springer, 2002, ISBN 3-540-42849-6  .  
  
 
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">