The penrosesche graphical notation  - as penrosesche diagrammatic notation  , tensor diagram notation  or simply Penrose notation  called - is one of Roger Penrose  proposed notation in physics  and mathematics  , a (mostly handwritten) visual representation of multi-linear maps  or tensors  to receive. A diagram consists of closed shapes that are connected by lines.
The notation has been extensively researched by Predrag Cvitanović  , who uses this notation to classify classical Lie groups  . The notation has been generalized to represent the theory of spin networks  in physics and the presence of matrix groups  in linear algebra  .
Multilinear algebra In multilinear algebra  , every form corresponds to a multilinear function. The lines on shapes represent the inputs or outputs of the function. The connection of these inputs and outputs corresponds to the composition of  the respective functions.
Tensors In tensor algebra  , a particular tensor is represented as a particular shape. Lines up and down abstract the upper and lower indices of  the respective tensors. Connections between two forms corresponds to the contraction of  the indices. One advantage of this notation is that you don't have to invent new letters for new indices. The notation is also expressly independent of the base.
Examples 
		
			
			
vector  
  
    
      
        
          ξ 
          
            a 
           
         
       
     
    {\ displaystyle \ xi ^ {a}} 
   
 
			 
		 
			
			
vector 
  
    
      
        
          η 
          
            a 
           
         
       
     
    {\ displaystyle \ eta ^ {a}} 
   
 
			 
		 
			
			
vector 
  
    
      
        
          ζ 
          
            a 
           
         
       
     
    {\ displaystyle \ zeta ^ {a}} 
   
 
			 
		 
			
			
vector 
  
    
      
        
          β 
          
            a 
           
         
       
     
    {\ displaystyle \ beta _ {a}} 
   
 
			 
		 
			
			
Tensor  
  
    
      
        
          λ 
          
            b 
            c 
            d 
           
          
            a 
           
         
       
     
    {\ displaystyle \ lambda _ {bcd} ^ {a}} 
   
 
			 
		 
			
			
Tensor 
  
    
      
        
          D. 
          
            c 
            d 
           
          
            a 
            b 
           
         
       
     
    {\ displaystyle D_ {cd} ^ {from}} 
   
 
			 
		 
			
			
Symmetrization 
  
    
      
        
          Q 
          
            ( 
            
              a 
              
                1 
               
             
            ... 
            
              a 
              
                n 
               
             
            ) 
           
         
       
     
    {\ displaystyle Q ^ {(a_ {1} \ ldots a_ {n})}} 
   
 
			 
		 
			
			
Asymmetrization 
  
    
      
        
          E. 
          
            [ 
            
              a 
              
                1 
               
             
            ... 
            
              a 
              
                n 
               
             
            ] 
           
         
       
     
    {\ displaystyle E _ {[a_ {1} \ ldots a_ {n}]}} 
   
 
			 
		 
			
			
Tensor  
  
    
      
        
          Q 
          
            f 
            G 
           
          
            a 
            b 
            c 
           
         
       
     
    {\ displaystyle Q_ {fg} ^ {abc}} 
   
 
			 
		 
			
			
  
    
      
        
          Q 
          
            f 
            G 
           
          
            a 
            b 
            c 
           
         
        - 
        2 
        
          Q 
          
            f 
            G 
           
          
            b 
            c 
            a 
           
         
       
     
    {\ displaystyle Q_ {fg} ^ {abc} -2 \, Q_ {fg} ^ {bca}} 
   
 
			 
		 
			
			
  
    
      
        
          Q 
          
            f 
            G 
           
          
            a 
            b 
            c 
           
         
        - 
        2 
        
          Q 
          
            G 
            f 
           
          
            b 
            c 
            a 
           
         
       
     
    {\ displaystyle Q_ {fg} ^ {abc} -2 \, Q_ {gf} ^ {bca}} 
   
 
			 
		 
			
			
  
    
      
        
          ξ 
          
            a 
           
         
        
          λ 
          
            a 
            b 
            [ 
            c 
           
          
            ( 
            d 
           
         
        
          D. 
          
            f 
            G 
            ] 
           
          
            e 
            ) 
            b 
           
         
       
     
    {\ displaystyle \ xi ^ {a} \, \ lambda _ {ab [c} ^ {(d} \, D_ {fg]} ^ {e) b}} 
   
 
  
    
      
        
          
           
          
            
              
                1 
                
                  2 
                  ! 
                 
               
             
            ⋅ 
            
              
                1 
                
                  3 
                  ! 
                 
               
             
            = 
            
              
                1 
                12 
               
             
           
         
       
     
    {\ displaystyle {} _ {{\ frac {1} {2!}} \ cdot {\ frac {1} {3!}} = {\ frac {1} {12}}}} 
   
 
			 
		 
			
			
  
    
      
        
          ϵ 
          
            
              a 
              
                1 
               
             
            ... 
            
              a 
              
                n 
               
             
           
         
       
     
    {\ displaystyle \ epsilon ^ {a_ {1} \ ldots a_ {n}}} 
   
 
			 
		 
			
			
Faculty  
  
    
      
        
          ε 
          
            
              a 
              
                1 
               
             
            ... 
            
              a 
              
                n 
               
             
           
         
        
          ϵ 
          
            
              a 
              
                1 
               
             
            ... 
            
              a 
              
                n 
               
             
           
         
        = 
        n 
        ! 
       
     
    {\ displaystyle \ varepsilon _ {a_ {1} \ ldots a_ {n}} \, \ epsilon ^ {a_ {1} \ ldots a_ {n}} = n!} 
   
 
			 
		 
			
			
Determinant  
  
    
      
        det 
        
          T 
         
        = 
        det 
        
          ( 
          
            T 
            
                
              b 
             
            
              a 
             
           
          ) 
         
       
     
    {\ displaystyle \ det \ mathbf {T} = \ det \ left (T _ {\ b} ^ {a} \ right)} 
   
 
			 
		 
			
			
  
    
      
        det 
        
          ( 
          
            S. 
            T 
           
          ) 
         
        = 
       
     
    {\ displaystyle \ det \ left (\ mathbf {ST} \ right) =} 
   
 
  
    
      
        det 
        
          S. 
         
        det 
        
          T 
         
       
     
    {\ displaystyle \ det \ mathbf {S} \, \ det \ mathbf {T}} 
   
 
			 
		 
			
			
Track function  
  
    
      
        track 
         
        
          T 
         
        = 
        
          T 
          
              
            a 
           
          
            a 
           
         
       
     
    {\ displaystyle \ operatorname {track} \ mathbf {T} = T _ {\ a} ^ {a}} 
   
 
			 
		 
			
			
Structural constant  
  
    
      
        
          γ 
          
            α 
            β 
           
          
            χ 
           
         
        = 
        - 
        
          γ 
          
            β 
            α 
           
          
            χ 
           
         
       
     
    {\ displaystyle \ gamma _ {\ alpha \ beta} ^ {\ chi} = - \ gamma _ {\ beta \ alpha} ^ {\ chi}} 
   
 
			 
		 
			
			
  
    
      
        
          γ 
          
            [ 
            α 
            β 
           
          
            ξ 
           
         
        
          γ 
          
            χ 
            ] 
            ξ 
           
          
            ζ 
           
         
        = 
        0 
       
     
    {\ displaystyle \ gamma _ {[\ alpha \ beta} ^ {\ xi} \, \ gamma _ {\ chi] \ xi} ^ {\ zeta} = 0} 
   
 
			 
		 
			
			
Covariant derivative  
  
    
      
        12 
        
          ∇ 
          
            μ 
           
         
        
          { 
          
            
              ξ 
              
                a 
               
             
            
              λ 
              
                a 
                b 
                [ 
                c 
               
              
                ( 
                d 
               
             
            
              D. 
              
                f 
                G 
                ] 
               
              
                e 
                ) 
                b 
               
             
           
          } 
         
       
     
    {\ displaystyle 12 \ nabla _ {\ mu} \ left \ {\ xi ^ {a} \ lambda _ {ab [c} ^ {(d} D_ {fg]} ^ {e) b} \ right \}} 
   
 
			 
		 
			
			
Ricci identity  
  
    
      
        ( 
        
          ∇ 
          
            a 
           
         
        
          ∇ 
          
            b 
           
         
        - 
        
          ∇ 
          
            b 
           
         
        
          ∇ 
          
            a 
           
         
        ) 
        
          
            ξ 
           
          
            d 
           
         
       
     
    {\ displaystyle (\ nabla _ {a} \, \ nabla _ {b} - \ nabla _ {b} \, \ nabla _ {a}) \, \ mathbf {\ xi} ^ {d}} 
   
 
  
    
      
        = 
        
          R. 
          
            a 
            b 
            c 
           
          
              
              
              
            d 
           
         
        
          
            ξ 
           
          
            c 
           
         
       
     
    {\ displaystyle = R_ {abc} ^ {\ \ \ d} \, \ mathbf {\ xi} ^ {c}} 
   
 
			 
		 
			
			
Ricci tensor  
  
    
      
        
          R. 
          
            a 
            b 
           
         
        = 
        
          R. 
          
            a 
            c 
            b 
           
          
              
              
              
            c 
           
         
       
     
    {\ displaystyle R_ {ab} = R_ {acb} ^ {\ \ \ c}} 
   
 
			 
		 
			
			
Antisymmetry of the Riemannian curvature tensor 
  
    
      
        
          R. 
          
            a 
            b 
            c 
           
          
              
              
              
            d 
           
         
        = 
        - 
        
          R. 
          
            b 
            a 
            c 
           
          
              
              
              
            d 
           
         
       
     
    {\ displaystyle R_ {abc} ^ {\ \ \ d} = - R_ {bac} ^ {\ \ \ d}} 
   
 
			 
		 
			
			
Bianchi identity  
  
    
      
        
          ∇ 
          
            [ 
            a 
           
         
        
          R. 
          
            b 
            c 
            ] 
            d 
           
          
              
              
              
            e 
           
         
        = 
        0 
       
     
    {\ displaystyle \ nabla _ {[a} R_ {bc] d} ^ {\ \ \ e} = 0} 
   
 
			 
		 
			
			
  
    
      
        
          G 
          
            a 
            b 
           
         
        = 
        
          G 
          
            b 
            a 
           
         
       
     
    {\ displaystyle g_ {ab} = g_ {ba}} 
   
 
  
    
      
        
          
            G 
           
          
            T 
           
         
        = 
        
          G 
         
       
     
    {\ displaystyle \ mathbf {g} ^ {T} = \ mathbf {g}} 
   
 
			 
		 
			
			
  
    
      
        
          G 
          
            a 
            b 
           
         
        = 
        
          G 
          
            b 
            a 
           
         
       
     
    {\ displaystyle g ^ {ab} = g ^ {ba}} 
   
 
			 
		 
			
			
  
    
      
        
          G 
          
            a 
            b 
           
         
        
          G 
          
            b 
            c 
           
         
        = 
        
          δ 
          
            a 
           
          
            c 
           
         
        = 
        
          G 
          
            c 
            b 
           
         
        
          G 
          
            b 
            a 
           
         
       
     
    {\ displaystyle g_ {ab} \, g ^ {bc} = \ delta _ {a} ^ {c} = g ^ {cb} \, g_ {ba}} 
   
 
			 
		  
See also literature 
Roger Penrose  : The Road to Reality: A Complete Guide to the Laws of the Universe.  Jonathan Cape, London et al. 2004, ISBN 0-224-04447-8  . 
Roger Penrose  , Wolfgang Rindler  : Spinors and Space-Time: Vol I, Two-Spinor Calculus and Relativistic Fields  . Cambridge University Press, 1984, ISBN 0-521-24527-3  .  
 
Roger Penrose  , Wolfgang Rindler  : Spinors and Space-Time: Vol. II, Spinor and Twistor Methods in Space-Time Geometry  . Cambridge University Press, 1986, ISBN 0-521-25267-9  .  
 
 
Web links  
<img src="https://de.wikipedia.org//de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">