Series (mathematics): Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m →‎Convergence tests: +main article
Dbsanfte (talk | contribs)
m Latin plural of 'series' is 'seriei'. Changed this and corrected the previous ambiguities about plurality or singularity. Any links keep their destination but change their label.
Line 7: Line 7:
In most cases of interest the terms of the sequence are produced according to a certain rule, such as by a [[formula]], by an [[algorithm]], by a sequence of [[measurement]]s, or even by a [[random number generator]].
In most cases of interest the terms of the sequence are produced according to a certain rule, such as by a [[formula]], by an [[algorithm]], by a sequence of [[measurement]]s, or even by a [[random number generator]].


Series may be [[finite set|finite]], or ''infinite''; in the first case they may be handled with elementary [[algebra]], but infinite series require tools from [[mathematical analysis]] if they are to be applied in anything more than a tentative way.
Seriei may be [[finite set|finite]], or ''infinite''; in the first case they may be handled with elementary [[algebra]], but infinite seriei require tools from [[mathematical analysis]] if they are to be applied in anything more than a tentative way.


Examples of simple series include the [[arithmetic series]] which is a sum of an [[arithmetic progression]], written as:
Examples of simple seriei include the [[arithmetic series]] which is a sum of an [[arithmetic progression]], written as:


:<math>\sum_{n=0}^k (an+b);</math>
:<math>\sum_{n=0}^k (an+b);</math>
Line 17: Line 17:
:<math>\sum_{n=0}^k a^{n}.</math>
:<math>\sum_{n=0}^k a^{n}.</math>


==Infinite series==
==Infinite seriei==


The sum of an '''infinite series''' ''a''<sub>0</sub>&nbsp;+&nbsp;''a''<sub>1</sub>&nbsp;+&nbsp;''a''<sub>2</sub>&nbsp;+&nbsp;... is the [[Limit of a sequence|limit]] of the [[sequence]] of '''partial sums'''
The sum of an '''infinite series''' ''a''<sub>0</sub>&nbsp;+&nbsp;''a''<sub>1</sub>&nbsp;+&nbsp;''a''<sub>2</sub>&nbsp;+&nbsp;... is the [[Limit of a sequence|limit]] of the [[sequence]] of '''partial sums'''
Line 23: Line 23:
: <math>S_N = a_0 + a_1 + a_2 + \cdots + a_N,</math>
: <math>S_N = a_0 + a_1 + a_2 + \cdots + a_N,</math>


as ''N'' → ∞. This limit can have a finite value; if it does, the series is said to ''converge''; if it does not, it is said to ''diverge''. The fact that infinite series can converge resolves several of [[Zeno's paradoxes]].
as ''N'' → ∞. This limit can have a finite value; if it does, the series is said to ''converge''; if it does not, it is said to ''diverge''. The fact that infinite seriei can converge resolves several of [[Zeno's paradoxes]].


The simplest convergent infinite series is perhaps
The simplest convergent infinite series is perhaps
Line 50: Line 50:
Also, different notions of convergence of such a sequence do exist ([[absolute convergence]], summability, etc). In case the elements of the sequence (and thus of the series) are not simple numbers, but, for example, [[function (mathematics)|function]]s, still more types of convergence can be considered (pointwise convergence, uniform convergence, etc.; see below).
Also, different notions of convergence of such a sequence do exist ([[absolute convergence]], summability, etc). In case the elements of the sequence (and thus of the series) are not simple numbers, but, for example, [[function (mathematics)|function]]s, still more types of convergence can be considered (pointwise convergence, uniform convergence, etc.; see below).


Mathematicians extend this idiom to other, equivalent notions of series. For instance, when we talk about a [[repeating decimal]], we are talking, in fact, just about the series for which it stands (0.1 + 0.01 + 0.001 + ...). But because these series always converge to [[real numbers]] (because of what is called the [[completeness axiom]]), to talk about the series in this way is the same as to talk about the numbers for which they stand. In particular, it should offend no sensibilities if we make no distinction between 0.111... and <math>\frac{1}{9}</math>. More objectionable is the argument that <math>9 \times 0.111\dots = 0.999\dots = 1</math>, but it is not untenable when we consider that we can formalize the proof knowing only that limit laws preserve the arithmetic operations. See [[proof that 0.999... equals 1]] for more.
Mathematicians extend this idiom to other, equivalent notions of seriei. For instance, when we talk about a [[repeating decimal]], we are talking, in fact, just about the series for which it stands (0.1 + 0.01 + 0.001 + ...). But because these seriei always converge to [[real numbers]] (because of what is called the [[completeness axiom]]), to talk about the series in this way is the same as to talk about the numbers for which they stand. In particular, it should offend no sensibilities if we make no distinction between 0.111... and <math>\frac{1}{9}</math>. More objectionable is the argument that <math>9 \times 0.111\dots = 0.999\dots = 1</math>, but it is not untenable when we consider that we can formalize the proof knowing only that limit laws preserve the arithmetic operations. See [[proof that 0.999... equals 1]] for more.


== History of the theory of infinite series ==
== History of the theory of infinite seriei ==
===Development of infinite series===
===Development of infinite seriei===
The idea of an [[finite set|infinite]] series expansion of a function was first conceived in [[Indian mathematics|India]] by [[Madhava of Sangamagrama|Madhava]] in the [[14th century]], who also developed the concepts of the [[power series]], the [[Taylor series]], the [[Maclaurin series]], rational approximations of infinite series, and infinite [[continued fraction]]s. He discovered a number of infinite series, including the [[Taylor series]] of the [[trigonometric function]]s of [[sine]], [[cosine]], [[tangent]] and [[arctangent]], the Taylor series approximations of the sine and cosine functions, and the [[power series]] of the [[radius]], [[diameter]], [[circumference]], angle [[θ]], [[π]] and π/4. His students and followers in the [[Kerala School]] further expanded his works with various other series expansions and approximations, until the [[16th century]].
The idea of an [[finite set|infinite]] series expansion of a function was first conceived in [[Indian mathematics|India]] by [[Madhava of Sangamagrama|Madhava]] in the [[14th century]], who also developed the concepts of the [[power series]], the [[Taylor series]], the [[Maclaurin series]], rational approximations of infinite seriei, and infinite [[continued fraction]]s. He discovered a number of infinite seriei, including the [[Taylor series]] of the [[trigonometric function]]s of [[sine]], [[cosine]], [[tangent]] and [[arctangent]], the Taylor series approximations of the sine and cosine functions, and the [[power series]] of the [[radius]], [[diameter]], [[circumference]], angle [[θ]], [[π]] and π/4. His students and followers in the [[Kerala School]] further expanded his works with various other series expansions and approximations, until the [[16th century]].


In the [[17th century]], [[James Gregory (astronomer and mathematician)|James Gregory]] also worked on infinite series and published several [[Maclaurin series]]. In [[1715]], a general method for constructing the [[Taylor series]] for all functions for which they exist was provided by [[Brook Taylor]]. [[Leonhard Euler]] in the [[18th century]], developed the theory of [[hypergeometric series]] and [[q-series]].
In the [[17th century]], [[James Gregory (astronomer and mathematician)|James Gregory]] also worked on infinite seriei and published several [[Maclaurin series|Maclaurin seriei]]. In [[1715]], a general method for constructing the [[Taylor series]] for all functions for which they exist was provided by [[Brook Taylor]]. [[Leonhard Euler]] in the [[18th century]], developed the theory of [[hypergeometric series|hypergeometric seriei]] and [[q-series|q-seriei]].


===Convergence criteria===
===Convergence criteria===
The study of the [[convergence]] criteria of a series began with Madhava in the 14th century, who developed [[Integral test for convergence|tests of convergence]] of infinite series, which his followers further developed at the Kerala School.
The study of the [[convergence]] criteria of a series began with Madhava in the 14th century, who developed [[Integral test for convergence|tests of convergence]] of infinite seriei, which his followers further developed at the Kerala School.


In Europe however, the investigation of the validity of infinite series is considered to begin with [[Carl Friedrich Gauss|Gauss]] in the [[19th century]]. Euler had already considered the [[hypergeometric series]]
In Europe however, the investigation of the validity of infinite seriei is considered to begin with [[Carl Friedrich Gauss|Gauss]] in the [[19th century]]. Euler had already considered the [[hypergeometric series]]


:<math>1 + \frac{\alpha\beta}{1\cdot\gamma}x + \frac{\alpha(\alpha+1)\beta(\beta+1)}{1 \cdot 2 \cdot \gamma(\gamma+1)}x^2 + \cdots.</math>
:<math>1 + \frac{\alpha\beta}{1\cdot\gamma}x + \frac{\alpha(\alpha+1)\beta(\beta+1)}{1 \cdot 2 \cdot \gamma(\gamma+1)}x^2 + \cdots.</math>
on which Gauss published a memoir in 1812. It established simpler criteria of convergence, and the questions of remainders and the range of convergence.
on which Gauss published a memoir in 1812. It established simpler criteria of convergence, and the questions of remainders and the range of convergence.


[[Cauchy]] (1821) insisted on strict tests of convergence; he showed that if two series are convergent their product is not necessarily so, and with him begins the discovery of effective criteria. The terms ''convergence'' and ''divergence'' had been introduced long before by [[James Gregory (astronomer and mathematician)|Gregory]] (1668). [[Leonhard Euler]] and [[Carl Friedrich Gauss|Gauss]] had given various criteria, and [[Colin Maclaurin]] had anticipated some of Cauchy's discoveries. Cauchy advanced the theory of [[power series]] by his expansion of a complex [[function (mathematics)|function]] in such a form.
[[Cauchy]] (1821) insisted on strict tests of convergence; he showed that if two seriei are convergent their product is not necessarily so, and with him begins the discovery of effective criteria. The terms ''convergence'' and ''divergence'' had been introduced long before by [[James Gregory (astronomer and mathematician)|Gregory]] (1668). [[Leonhard Euler]] and [[Carl Friedrich Gauss|Gauss]] had given various criteria, and [[Colin Maclaurin]] had anticipated some of Cauchy's discoveries. Cauchy advanced the theory of [[power series]] by his expansion of a complex [[function (mathematics)|function]] in such a form.


[[Niels Henrik Abel|Abel]] (1826) in his memoir on the series
[[Niels Henrik Abel|Abel]] (1826) in his memoir on the series
Line 102: Line 102:
===Semi-convergence===
===Semi-convergence===


Semi-convergent series were studied by Poisson (1823), who also gave
Semi-convergent seriei were studied by Poisson (1823), who also gave
a general form for the remainder of the Maclaurin formula. The most
a general form for the remainder of the Maclaurin formula. The most
important solution of the problem is due, however, to Jacobi (1834),
important solution of the problem is due, however, to Jacobi (1834),
Line 120: Line 120:
===Fourier series===
===Fourier series===


[[Fourier series]] were being investigated
[[Fourier series|Fourier seriei]] were being investigated
as the result of physical considerations at the same time that
as the result of physical considerations at the same time that
Gauss, Abel, and Cauchy were working out the theory of infinite
Gauss, Abel, and Cauchy were working out the theory of infinite
series. Series for the expansion of sines and cosines, of multiple
seriei. Seriei for the expansion of sines and cosines, of multiple
arcs in powers of the sine and cosine of the arc had been treated by
arcs in powers of the sine and cosine of the arc had been treated by
[[Jakob Bernoulli]] (1702) and his brother [[Johann Bernoulli]] (1701) and still
[[Jakob Bernoulli]] (1702) and his brother [[Johann Bernoulli]] (1701) and still
Line 138: Line 138:
of convergence of his series, a matter left for [[Augustin Louis Cauchy|Cauchy]] (1826) to
of convergence of his series, a matter left for [[Augustin Louis Cauchy|Cauchy]] (1826) to
attempt and for Dirichlet (1829) to handle in a thoroughly
attempt and for Dirichlet (1829) to handle in a thoroughly
scientific manner (see [[convergence of Fourier series]]). Dirichlet's treatment (''[[Crelle]]'', 1829), of trigonometric series was the subject of criticism and improvement by
scientific manner (see [[convergence of Fourier series|convergence of Fourier seriei]]). Dirichlet's treatment (''[[Crelle]]'', 1829), of trigonometric seriei was the subject of criticism and improvement by
Riemann (1854), Heine, [[Rudolf Lipschitz|Lipschitz]], [[Ludwig Schläfli|Schläfli]], and
Riemann (1854), Heine, [[Rudolf Lipschitz|Lipschitz]], [[Ludwig Schläfli|Schläfli]], and
[[DuBois-Reymond]]. Among other prominent contributors to the theory of
[[DuBois-Reymond]]. Among other prominent contributors to the theory of
trigonometric and Fourier series were [[Ulisse Dini|Dini]], [[Charles Hermite|Hermite]], [[Georges Henri Halphen|Halphen]],
trigonometric and Fourier seriei were [[Ulisse Dini|Dini]], [[Charles Hermite|Hermite]], [[Georges Henri Halphen|Halphen]],
Krause, Byerly and [[Paul Émile Appell|Appell]].
Krause, Byerly and [[Paul Émile Appell|Appell]].


== Some types of infinite series ==
== Some types of infinite seriei ==
* A ''[[geometric series]]'' is one where each successive term is produced by multiplying the previous term by a constant number. Example:
* A ''[[geometric series]]'' is one where each successive term is produced by multiplying the previous term by a constant number. Example:
::<math>1 + {1 \over 2} + {1 \over 4} + {1 \over 8} + {1 \over 16} + \cdots=\sum_{n=0}^\infty{1 \over 2^n}.</math>
::<math>1 + {1 \over 2} + {1 \over 4} + {1 \over 8} + {1 \over 16} + \cdots=\sum_{n=0}^\infty{1 \over 2^n}.</math>
Line 185: Line 185:
*[[Integral test for convergence|Integral test]]: if ''f''(''x'') is a positive [[monotone decreasing]] function defined on the [[interval (mathematics)|interval]] <nowiki>[</nowiki>1, ∞<nowiki>)</nowiki><!--DO NOT "FIX" THE "TYPO" IN THE FOREGOING. IT IS INTENDED TO SAY [...) WITH A SQUARE BRACKET ON THE LEFT AND A ROUND BRACKET ON THE RIGHT. --> with ''f''(''n'') = ''a''<sub>''n''</sub> for all ''n'', then ∑ ''a''<sub>''n''</sub> converges if and only if the [[integral]] ∫<sub>1</sub><sup>∞</sup> ''f''(''x'') d''x'' is finite.
*[[Integral test for convergence|Integral test]]: if ''f''(''x'') is a positive [[monotone decreasing]] function defined on the [[interval (mathematics)|interval]] <nowiki>[</nowiki>1, ∞<nowiki>)</nowiki><!--DO NOT "FIX" THE "TYPO" IN THE FOREGOING. IT IS INTENDED TO SAY [...) WITH A SQUARE BRACKET ON THE LEFT AND A ROUND BRACKET ON THE RIGHT. --> with ''f''(''n'') = ''a''<sub>''n''</sub> for all ''n'', then ∑ ''a''<sub>''n''</sub> converges if and only if the [[integral]] ∫<sub>1</sub><sup>∞</sup> ''f''(''x'') d''x'' is finite.
*[[Alternating series test]]: A series of the form ∑ (&minus;1)<sup>''n''</sup> ''a''<sub>''n''</sub> (with ''a''<sub>''n''</sub> ≥ 0) is called ''alternating''. Such a series converges if the [[sequence]] ''a''<sub>''n''</sub> is [[monotone decreasing]] and converges to 0. The converse is in general not true.
*[[Alternating series test]]: A series of the form ∑ (&minus;1)<sup>''n''</sup> ''a''<sub>''n''</sub> (with ''a''<sub>''n''</sub> ≥ 0) is called ''alternating''. Such a series converges if the [[sequence]] ''a''<sub>''n''</sub> is [[monotone decreasing]] and converges to 0. The converse is in general not true.
*For some specific types of series there are more specialized convergence tests, for instance for [[Fourier series]] there is the [[Dini test]].
*For some specific types of seriei there are more specialized convergence tests, for instance for [[Fourier series|Fourier seriei]] there is the [[Dini test]].


==Power series ==
==Power series ==


Several important functions can be represented as [[Taylor series]]; these are infinite series involving powers of the independent variable and are also called [[power series]]. For example, the series
Several important functions can be represented as [[Taylor series|Taylor seriei]]; these are infinite seriei involving powers of the independent variable and are also called [[power series|power seriei]]. For example, the series
:<math>\sum_{n=0}^\infty\frac{x^n}{n!}</math>
:<math>\sum_{n=0}^\infty\frac{x^n}{n!}</math>
converges to <math>e^x</math> for all ''x''. See also [[radius of convergence]].
converges to <math>e^x</math> for all ''x''. See also [[radius of convergence]].


Historically, mathematicians such as [[Leonhard Euler]] operated liberally with infinite series, even if they were not convergent.
Historically, mathematicians such as [[Leonhard Euler]] operated liberally with infinite seriei, even if they were not convergent.
When calculus was put on a sound and correct foundation in the nineteenth century, rigorous proofs of the convergence of series were always required.
When calculus was put on a sound and correct foundation in the nineteenth century, rigorous proofs of the convergence of seriei were always required.
However, the formal operation with non-convergent series has been retained in rings of [[formal power series]] which are studied in [[abstract algebra]]. Formal power series are also used in [[combinatorics]] to describe and study [[sequence]]s that are otherwise difficult to handle; this is the method of [[generating function]]s.
However, the formal operation with non-convergent seriei has been retained in rings of [[formal power series|formal power seriei]] which are studied in [[abstract algebra]]. Formal power seriei are also used in [[combinatorics]] to describe and study [[sequence]]s that are otherwise difficult to handle; this is the method of [[generating function]]s.


== Generalizations ==
== Generalizations ==


[[Asymptotic series]], otherwise [[asymptotic expansion]]s, are infinite series whose partial sums become good approximations in the limit of some point of the domain. In general they do not converge. But they are useful as sequences of approximations, each of which provides a value close to the desired answer for a finite number of terms. The difference is that an asymptotic series cannot be made to produce an answer as exact as desired, the way that convergent series can. In fact, after a certain number of terms, a typical [[asymptotic series]] reaches its best approximation; if more terms are included, most such series will produce worse answers.
[[Asymptotic series|Asymptotic seriei]], otherwise [[asymptotic expansion]]s, are infinite seriei whose partial sums become good approximations in the limit of some point of the domain. In general they do not converge. But they are useful as sequences of approximations, each of which provides a value close to the desired answer for a finite number of terms. The difference is that an asymptotic series cannot be made to produce an answer as exact as desired, the way that convergent seriei can. In fact, after a certain number of terms, a typical [[asymptotic series]] reaches its best approximation; if more terms are included, most such seriei will produce worse answers.


[[Cesàro summation]], (''C'',''k'') summation, [[Abel summation]], and [[Borel summation]] provide increasingly weaker (and hence applicable to increasingly divergent series) means of defining the sums of series.
[[Cesàro summation]], (''C'',''k'') summation, [[Abel summation]], and [[Borel summation]] provide increasingly weaker (and hence applicable to increasingly divergent seriei) means of defining the sums of seriei.


The notion of series can be defined in every [[abelian group|abelian]] [[topological group]]; the most commonly encountered case is that of series in a [[Banach space]].
The notion of seriei can be defined in every [[abelian group|abelian]] [[topological group]]; the most commonly encountered case is that of seriei in a [[Banach space]].


=== Summations over arbitrary index sets ===
=== Summations over arbitrary index sets ===
Line 211: Line 211:
if it exists and say that the series ''a'' converges unconditionally. Thus it is the limit of all finite partial sums. Because ''F'' is not [[total order|totally ordered]], and because there may be uncountably many finite partial sums, this is not a [[limit of a sequence]] of partial sums, but rather of a [[net (mathematics)|net]].
if it exists and say that the series ''a'' converges unconditionally. Thus it is the limit of all finite partial sums. Because ''F'' is not [[total order|totally ordered]], and because there may be uncountably many finite partial sums, this is not a [[limit of a sequence]] of partial sums, but rather of a [[net (mathematics)|net]].


This definition is insensitive to the order of the summation, so the limit will not exist for conditionally convergent series. If, however, ''I'' is a [[well-ordered]] set (for example any [[ordinal]]), one may consider the limit of partial sums of the finite initial segments
This definition is insensitive to the order of the summation, so the limit will not exist for conditionally convergent seriei. If, however, ''I'' is a [[well-ordered]] set (for example any [[ordinal]]), one may consider the limit of partial sums of the finite initial segments
:<math>\sum_{i\in I}a_i=\lim_n \left\{\sum_{i=1}^n a_i\right\}.</math>
:<math>\sum_{i\in I}a_i=\lim_n \left\{\sum_{i=1}^n a_i\right\}.</math>


Line 222: Line 222:
==== Real sequences ====
==== Real sequences ====


For real-valued series, an uncountable sum converges only if at most at most countably many terms are nonzero. Indeed, let
For real-valued seriei, an uncountable sum converges only if at most at most countably many terms are nonzero. Indeed, let
:<math>I_n=\left\{i\in I \,\bigg | a_i>\frac{1}{n}\right\}</math>
:<math>I_n=\left\{i\in I \,\bigg | a_i>\frac{1}{n}\right\}</math>
be the set of indices whose terms are greater than 1/''n''. Each ''I''<sub>''n''</sub> is finite (otherwise the series would diverge). The set of indices whose terms are nonzero is the union of the ''I''<sub>''n''</sub> by the [[Archimedean principle]], and the union of countably many countable sets is countable by the [[axiom of choice]].
be the set of indices whose terms are greater than 1/''n''. Each ''I''<sub>''n''</sub> is finite (otherwise the seriei would diverge). The set of indices whose terms are nonzero is the union of the ''I''<sub>''n''</sub> by the [[Archimedean principle]], and the union of countably many countable sets is countable by the [[axiom of choice]].


Occasionally [[integral]]s of real functions are described as sums over the reals. The above result shows that this interpretation should not be taken too literally. On the other hand, any sum over the reals can be understood as an integral with respect to the [[counting measure]], which accounts for the many similarities between the two constructions.
Occasionally [[integral]]s of real functions are described as sums over the reals. The above result shows that this interpretation should not be taken too literally. On the other hand, any sum over the reals can be understood as an integral with respect to the [[counting measure]], which accounts for the many similarities between the two constructions.


The proof goes forward in general [[first-countable space|first-countable]] [[topological vector space]]s as well, such as [[Banach space]]s; define ''I''<sub>''n''</sub> to be those indices whose terms are outside the ''n''-th neighborhood of 0. Thus uncountable series can only be interesting if they are valued in spaces that are not first-countable.
The proof goes forward in general [[first-countable space|first-countable]] [[topological vector space]]s as well, such as [[Banach space]]s; define ''I''<sub>''n''</sub> to be those indices whose terms are outside the ''n''-th neighborhood of 0. Thus uncountable seriei can only be interesting if they are valued in spaces that are not first-countable.


==== Examples ====
==== Examples ====
Line 257: Line 257:
</li>
</li>
<li>
<li>
In the definition of [[partitions of unity]], one constructs sums over arbitrary index. While, formally, this requires a notion of sums of uncountable series, by construction there are only finitely many nonzero terms in the sum, so issues regardly convergence of such sums do not arise.
In the definition of [[partitions of unity]], one constructs sums over arbitrary index. While, formally, this requires a notion of sums of uncountable seriei, by construction there are only finitely many nonzero terms in the sum, so issues regardly convergence of such sums do not arise.
</li>
</li>
</ol>
</ol>
Line 268: Line 268:


==External links==
==External links==
*There are examples of series and convergence tests at [http://www.exampleproblems.com/wiki/index.php/Calculus#Series_of_Real_Numbers exampleproblems.com].
*There are examples of seriei and convergence tests at [http://www.exampleproblems.com/wiki/index.php/Calculus#Series_of_Real_Numbers exampleproblems.com].


[[Category:Calculus]]
[[Category:Calculus]]

Revision as of 03:18, 27 September 2006

In mathematics, a series is often represented as the sum of a sequence of terms. That is, a series is represented as a list of numbers with addition operations between them, e.g,

1 + 2 + 3 + 4 + 5 + ...

which may or may not be meaningful, as will be explained below.

In most cases of interest the terms of the sequence are produced according to a certain rule, such as by a formula, by an algorithm, by a sequence of measurements, or even by a random number generator.

Seriei may be finite, or infinite; in the first case they may be handled with elementary algebra, but infinite seriei require tools from mathematical analysis if they are to be applied in anything more than a tentative way.

Examples of simple seriei include the arithmetic series which is a sum of an arithmetic progression, written as:

and finite geometric series, a sum of a geometric progression, which can be written as:

Infinite seriei

The sum of an infinite series a0 + a1 + a2 + ... is the limit of the sequence of partial sums

as N → ∞. This limit can have a finite value; if it does, the series is said to converge; if it does not, it is said to diverge. The fact that infinite seriei can converge resolves several of Zeno's paradoxes.

The simplest convergent infinite series is perhaps

It is possible to "visualize" its convergence on the real number line: we can imagine a line of length 2, with successive segments marked off of lengths 1, ½, ¼, etc. There is always room to mark the next segment, because the amount of line remaining is always the same as the last segment marked: when we have marked off ½, we still have a piece of length ½ unmarked, so we can certainly mark the next ¼. This argument does not prove that the sum is equal to 2 (although it is), but it does prove that it is at most 2 — in other words, the series has an upper bound.

This series is a geometric series and mathematicians usually write it as:

An infinite series is formally written as

where the elements an are real (or complex) numbers. We say that this series converges towards S, or that its value is S, if the limit

exists and is equal to S. If there is no such number, then the series is said to diverge.

Formal definition

Mathematicians usually define a series as a pair of sequences: the sequence of terms of the series: a0, a1, a2, ... ; and the sequence of partial sums S0, S1, S2, ... where . The notation : represents then a priori this pair of sequences, which is always well defined, but which may or may not converge. In the case of convergence, i.e., if the sequence of partial sums SN has a limit, the notation is also used to denote the limit of this sequence. To make a distinction between these two completely different objects (sequence vs. numerical value), one may sometimes omit the limits (atop and below the sum's symbol) in the former case, although it is usually clear from the context which one is meant.

Also, different notions of convergence of such a sequence do exist (absolute convergence, summability, etc). In case the elements of the sequence (and thus of the series) are not simple numbers, but, for example, functions, still more types of convergence can be considered (pointwise convergence, uniform convergence, etc.; see below).

Mathematicians extend this idiom to other, equivalent notions of seriei. For instance, when we talk about a repeating decimal, we are talking, in fact, just about the series for which it stands (0.1 + 0.01 + 0.001 + ...). But because these seriei always converge to real numbers (because of what is called the completeness axiom), to talk about the series in this way is the same as to talk about the numbers for which they stand. In particular, it should offend no sensibilities if we make no distinction between 0.111... and . More objectionable is the argument that , but it is not untenable when we consider that we can formalize the proof knowing only that limit laws preserve the arithmetic operations. See proof that 0.999... equals 1 for more.

History of the theory of infinite seriei

Development of infinite seriei

The idea of an infinite series expansion of a function was first conceived in India by Madhava in the 14th century, who also developed the concepts of the power series, the Taylor series, the Maclaurin series, rational approximations of infinite seriei, and infinite continued fractions. He discovered a number of infinite seriei, including the Taylor series of the trigonometric functions of sine, cosine, tangent and arctangent, the Taylor series approximations of the sine and cosine functions, and the power series of the radius, diameter, circumference, angle θ, π and π/4. His students and followers in the Kerala School further expanded his works with various other series expansions and approximations, until the 16th century.

In the 17th century, James Gregory also worked on infinite seriei and published several Maclaurin seriei. In 1715, a general method for constructing the Taylor series for all functions for which they exist was provided by Brook Taylor. Leonhard Euler in the 18th century, developed the theory of hypergeometric seriei and q-seriei.

Convergence criteria

The study of the convergence criteria of a series began with Madhava in the 14th century, who developed tests of convergence of infinite seriei, which his followers further developed at the Kerala School.

In Europe however, the investigation of the validity of infinite seriei is considered to begin with Gauss in the 19th century. Euler had already considered the hypergeometric series

on which Gauss published a memoir in 1812. It established simpler criteria of convergence, and the questions of remainders and the range of convergence.

Cauchy (1821) insisted on strict tests of convergence; he showed that if two seriei are convergent their product is not necessarily so, and with him begins the discovery of effective criteria. The terms convergence and divergence had been introduced long before by Gregory (1668). Leonhard Euler and Gauss had given various criteria, and Colin Maclaurin had anticipated some of Cauchy's discoveries. Cauchy advanced the theory of power series by his expansion of a complex function in such a form.

Abel (1826) in his memoir on the series

corrected certain of Cauchy's conclusions, and gave a completely scientific summation of the series for complex values of and . He showed the necessity of considering the subject of continuity in questions of convergence.

Cauchy's methods led to special rather than general criteria, and the same may be said of Raabe (1832), who made the first elaborate investigation of the subject, of De Morgan (from 1842), whose logarithmic test DuBois-Reymond (1873) and Pringsheim (1889) have shown to fail within a certain region; of Bertrand (1842), Bonnet (1843), Malmsten (1846, 1847, the latter without integration); Stokes (1847), Paucker (1852), Tchebichef (1852), and Arndt (1853).

General criteria began with Kummer (1835), and have been studied by Eisenstein (1847), Weierstrass in his various contributions to the theory of functions, Dini (1867), DuBois-Reymond (1873), and many others. Pringsheim's (from 1889) memoirs present the most complete general theory.

Uniform convergence

The theory of uniform convergence was treated by Cauchy (1821), his limitations being pointed out by Abel, but the first to attack it successfully were Stokes and Seidel (1847-48). Cauchy took up the problem again (1853), acknowledging Abel's criticism, and reaching the same conclusions which Stokes had already found. Thomé used the doctrine (1866), but there was great delay in recognizing the importance of distinguishing between uniform and non-uniform convergence, in spite of the demands of the theory of functions.

Semi-convergence

Semi-convergent seriei were studied by Poisson (1823), who also gave a general form for the remainder of the Maclaurin formula. The most important solution of the problem is due, however, to Jacobi (1834), who attacked the question of the remainder from a different standpoint and reached a different formula. This expression was also worked out, and another one given, by Malmsten (1847). Schlömilch (Zeitschrift, Vol.I, p. 192, 1856) also improved Jacobi's remainder, and showed the relation between the remainder and Bernoulli's function

.

Genocchi (1852) has further contributed to the theory.

Among the early writers was Wronski, whose "loi suprême" (1815) was hardly recognized until Cayley (1873) brought it into prominence.

Fourier series

Fourier seriei were being investigated as the result of physical considerations at the same time that Gauss, Abel, and Cauchy were working out the theory of infinite seriei. Seriei for the expansion of sines and cosines, of multiple arcs in powers of the sine and cosine of the arc had been treated by Jakob Bernoulli (1702) and his brother Johann Bernoulli (1701) and still earlier by Viète. Euler and Lagrange simplified the subject, as did Poinsot, Schröter, Glaisher, and Kummer.

Fourier (1807) set for himself a different problem, to expand a given function of in terms of the sines or cosines of multiples of , a problem which he embodied in his Théorie analytique de la Chaleur (1822). Euler had already given the formulas for determining the coefficients in the series; Fourier was the first to assert and attempt to prove the general theorem. Poisson (1820-23) also attacked the problem from a different standpoint. Fourier did not, however, settle the question of convergence of his series, a matter left for Cauchy (1826) to attempt and for Dirichlet (1829) to handle in a thoroughly scientific manner (see convergence of Fourier seriei). Dirichlet's treatment (Crelle, 1829), of trigonometric seriei was the subject of criticism and improvement by Riemann (1854), Heine, Lipschitz, Schläfli, and DuBois-Reymond. Among other prominent contributors to the theory of trigonometric and Fourier seriei were Dini, Hermite, Halphen, Krause, Byerly and Appell.

Some types of infinite seriei

  • A geometric series is one where each successive term is produced by multiplying the previous term by a constant number. Example:
In general, the geometric series
converges if and only if |z| < 1.
  • The series
converges if r > 1 and diverges for r ≤ 1, which can be shown with the integral criterion described below in convergence tests. As a function of r, the sum of this series is Riemann's zeta function.
converges if the sequence bn converges to a limit L as n goes to infinity. The value of the series is then b1L.

Absolute convergence

Main article: absolute convergence.

A series

is said to converge absolutely if the series of absolute values

converges. In this case, the original series, and all reorderings of it, converge, and converge towards the same sum.

The Riemann series theorem says that if a series converges, but not absolutely, then one can always find a reordering of the terms so that the reordered series diverges. Moreover, if the an are real and S is any real number, one can find a reordering so that the reordered series converges with limit S.

Convergence tests

  • Comparison test 1: If ∑bn  is an absolutely convergent series such that |an | ≤ C |bn | for some number C  and for sufficiently large n , then ∑an  converges absolutely as well. If ∑|bn | diverges, and |an | ≥ |bn | for all sufficiently large n , then ∑an  also fails to converge absolutely (though it could still be conditionally convergent, e.g. if the an  alternate in sign).
  • Comparison test 2: If ∑bn  is an absolutely convergent series such that |an+1 /an | ≤ C |bn+1 /bn | for some number C  and for sufficiently large n , then ∑an  converges absolutely as well. If ∑|bn | diverges, and |an+1 /an | ≥ |bn+1 /bn | for all sufficiently large n , then ∑an  also fails to converge absolutely (though it could still be conditionally convergent, e.g. if the an  alternate in sign).
  • Ratio test: If |an+1/an| approaches a number less than one as n approaches infinity, then ∑ an converges absolutely. When the ratio is 1, convergence can sometimes be determined as well.
  • Root test: If there exists a constant C < 1 such that |an|1/nC for all sufficiently large n, then ∑ an converges absolutely.
  • Integral test: if f(x) is a positive monotone decreasing function defined on the interval [1, ∞) with f(n) = an for all n, then ∑ an converges if and only if the integral1 f(x) dx is finite.
  • Alternating series test: A series of the form ∑ (−1)n an (with an ≥ 0) is called alternating. Such a series converges if the sequence an is monotone decreasing and converges to 0. The converse is in general not true.
  • For some specific types of seriei there are more specialized convergence tests, for instance for Fourier seriei there is the Dini test.

Power series

Several important functions can be represented as Taylor seriei; these are infinite seriei involving powers of the independent variable and are also called power seriei. For example, the series

converges to for all x. See also radius of convergence.

Historically, mathematicians such as Leonhard Euler operated liberally with infinite seriei, even if they were not convergent. When calculus was put on a sound and correct foundation in the nineteenth century, rigorous proofs of the convergence of seriei were always required. However, the formal operation with non-convergent seriei has been retained in rings of formal power seriei which are studied in abstract algebra. Formal power seriei are also used in combinatorics to describe and study sequences that are otherwise difficult to handle; this is the method of generating functions.

Generalizations

Asymptotic seriei, otherwise asymptotic expansions, are infinite seriei whose partial sums become good approximations in the limit of some point of the domain. In general they do not converge. But they are useful as sequences of approximations, each of which provides a value close to the desired answer for a finite number of terms. The difference is that an asymptotic series cannot be made to produce an answer as exact as desired, the way that convergent seriei can. In fact, after a certain number of terms, a typical asymptotic series reaches its best approximation; if more terms are included, most such seriei will produce worse answers.

Cesàro summation, (C,k) summation, Abel summation, and Borel summation provide increasingly weaker (and hence applicable to increasingly divergent seriei) means of defining the sums of seriei.

The notion of seriei can be defined in every abelian topological group; the most commonly encountered case is that of seriei in a Banach space.

Summations over arbitrary index sets

Analogous definitions may be given for sums over arbitrary index set. Let a: IX, where I is any set and X is an abelian topological group. Let F be the collection of all finite subsets of I. Note that F is a directed set ordered under inclusion with union as join. We define the sum of the series as the limit

if it exists and say that the series a converges unconditionally. Thus it is the limit of all finite partial sums. Because F is not totally ordered, and because there may be uncountably many finite partial sums, this is not a limit of a sequence of partial sums, but rather of a net.

This definition is insensitive to the order of the summation, so the limit will not exist for conditionally convergent seriei. If, however, I is a well-ordered set (for example any ordinal), one may consider the limit of partial sums of the finite initial segments

If this limit exists, then the series converges. Unconditional convergence implies convergence, but not conversely, as in the case of real sequences. If X is a Banach space and I is well-ordered, then one may define the notion of absolute convergence. A series converges absolutely if

exists. If a sequence converges absolutely then it converges unconditionally, but the converse only holds in finite dimensional Banach spaces.

Note that in some cases if the series is valued in a space that is not separable, one should consider limits of nets of partial sums over subsets of I which are not finite.

Real sequences

For real-valued seriei, an uncountable sum converges only if at most at most countably many terms are nonzero. Indeed, let

be the set of indices whose terms are greater than 1/n. Each In is finite (otherwise the seriei would diverge). The set of indices whose terms are nonzero is the union of the In by the Archimedean principle, and the union of countably many countable sets is countable by the axiom of choice.

Occasionally integrals of real functions are described as sums over the reals. The above result shows that this interpretation should not be taken too literally. On the other hand, any sum over the reals can be understood as an integral with respect to the counting measure, which accounts for the many similarities between the two constructions.

The proof goes forward in general first-countable topological vector spaces as well, such as Banach spaces; define In to be those indices whose terms are outside the n-th neighborhood of 0. Thus uncountable seriei can only be interesting if they are valued in spaces that are not first-countable.

Examples

  1. Given a function f: XY, with Y an abelian topological group, then define
    the function whose support is a singleton {a}. Then
    in the topology of pointwise convergence. This space is separable but not first countable.
  2. On the first uncountable ordinal viewed as a topological space in the order topology, the constant function f: [0,ω1] → [0,ω1] given by f(α)=1 satisfies
    (in other words, ω1 copies of 1 is ω1) only if one takes a limit over all countable partial sums, rather than finite partial sums. This space is not separable.
  3. In the definition of partitions of unity, one constructs sums over arbitrary index. While, formally, this requires a notion of sums of uncountable seriei, by construction there are only finitely many nonzero terms in the sum, so issues regardly convergence of such sums do not arise.

See also

External links