Formula One car: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m update link(s) following page move
Line 88: Line 88:
: 0 to {{Auto km/h|100|0}}: 2.0 seconds
: 0 to {{Auto km/h|100|0}}: 2.0 seconds
: 0 to {{Auto km/h|200|0}}: 3.9 seconds
: 0 to {{Auto km/h|200|0}}: 3.9 seconds
: 0 to {{Auto km/h|300|0}}: 8.6 seconds, may be slightly more or less depending on the aerodynamic setup.
: 0 to {{Auto km/h|300|0}}: 8.6 seconds*
*Figures may alter slightly depending on the aerodynamic setup.


The acceleration figure is usually 2.46 ''g'' (24.1 m/s²) up to {{Auto km/h|200|0}}, which means the driver is pushed back in the seat with 2.46 times his bodyweight.
The acceleration figure is usually 2.46 ''g'' (24.1 m/s²) up to {{Auto km/h|200|0}}, which means the driver is pushed back in the seat with 2.46 times his bodyweight.

Revision as of 19:50, 16 November 2007

Michael Schumacher driving a Formula One car at the 2004 United States Grand Prix

A modern Formula One car is a single-seat, open cockpit, open wheel race car with substantial front and rear wings, and engine positioned behind the driver. The regulations governing the cars are unique to the championship. The Formula One regulations specify that cars must be constructed by the racing teams themselves.

See Formula One regulations for a summary of the technical and sporting regulations.

Engines

For a decade F1 cars had run with 3.0 litre naturally-aspirated V10 engines, but in an attempt to slow the cars down, the FIA mandated that as of the 2006 season the cars must be powered by 2.4 litre naturally-aspirated engines in the V8 configuration that have no more than four valves per cylinder. Further technical restrictions such as a ban on variable intake trumpets have also been introduced with the new 2.4 L V8 formula to prevent the teams from achieving higher rpm and horsepower too quickly. As of the start of the 2007 season all engines are now limited to 19,000 rpm in an effort to improve engine reliability and to cut costs down in general.

Once the teams started using exotic alloys in the late 1990s, the FIA banned the use of exotic materials in engine construction, and only aluminum and iron alloys were allowed for the pistons, cylinders, connecting rods, and crankshafts. Nevertheless through engineering on the limit and the use of such devices as pneumatic valves, modern F1 engines have revved up to over 18,000 rpm since approximately the 2000 season. Almost each year the FIA has enforced material and design restrictions to limit power, otherwise the 3.0L V10 engines would easily have exceeded 22,000 rpm and well over 1,000 hp (735 kW). Even with the restrictions the V10s in the 2005 season were reputed to develop 960 hp (715 kW). The new 2.4L V8 engines are reported to develop between Template:Auto hp and Template:Auto hp.

The more poorly funded teams (Ferrari spends hundreds of millions of pounds a year developing their car, while the former Minardi team spent less than 50 million) had the option of keeping the current V10 for another season, but with a rev limiter to keep them from being competitive with the most powerful V8 engines. The only team to take this option was the Toro Rosso team, which was the reformed and regrouped Minardi.

The engines produce over 100,000 BTU per minute (1,750 kW) of heat that must be dumped, usually to the atmosphere via radiators and the exhaust, which can reach temperatures over 1,000 degrees Celsius (1,800 to 2,000 degrees Fahrenheit). They consume around 650 litres (23 ft³) of air per second. Race fuel consumption rate is normally around 75 litres per 100 kilometres travelled (3.1 US mpg - 3.8 UK mpg). Nonetheless a Formula One engine is over 20% more efficient at turning fuel into power than even the most economical small car.[citation needed]

All cars have the engine located between the driver and the rear axle. The engines are a stressed member in most cars, meaning that the engine is part of the structural support framework; being bolted to the cockpit at the front end, and transmission and rear suspension at the back end.

In the 2004 championship, engines were required to last a full race weekend; in the 2005 championship, they are required to last two full race weekends and if a team changes an engine between the two races, they incur a penalty of 10 grid positions. In 2007 this rule was altered slightly and an engine now only has to last for Saturday and Sunday running. This was to promote Friday running. In 2006, teams avoided running for long stints in an effort to save the engine and avoid a 10 place drop on the grid.

As of the 2006 Chinese Grand Prix all development of engines will be frozen until 2009, meaning that the teams will use engines of the same spec for the next two seasons.[1] The end of the engine freeze has been suggested to be the beginning of both bio-fuel and the reintroduction of turbos, both ideas suggested by FIA President Max Mosley.[2]

Transmission

Formula One cars use semi-automatic sequential gearboxes with six or seven forward gears and one reverse gear. The driver initiates gear changes using paddles mounted on the back of the steering wheel and electro-hydraulics perform the actual change as well as throttle control. Clutch control is also performed electro-hydraulically except from and to a standstill when the driver must operate the clutch using a lever mounted on the back of the steering wheel. By regulation the cars use rear wheel drive. A modern F1 clutch is a multi-plate carbon design with a diameter of less than four inches (100 mm), weighing less than 2.20 lb (1.00 kg) and handling 900 hp (670 kW) or so.

Continuously variable transmissions have long been banned, thus creating contention in the introduction of the new seamless shift gearbox, a type of dual-clutch transmission which nearly eliminates the brief power interruption during a gear change. The ultimate advantage of this is said to be from five to ten seconds over a complete race distance, which is a significant gain when races are sometimes only won by three seconds or less. As of the 2007 race season, most of the top teams are using seamless shift transmissions.

Aerodynamics

The rear wing of a modern Formula One car, with three aerodynamic elements (1, 2, 3). The rows of holes for adjustment of the angle of attack (4) and installation of another element (5) are visible on the wing's endplate.

The use of aerodynamics to increase the cars' grip was pioneered in Formula One in the late 1960s by Lotus, Ferrari and Brabham.

Wings

Early designs linked wings directly to the suspension, but several accidents led to rules stating that wings must be fixed rigidly to the chassis. The cars' aerodynamics are designed to provide maximum downforce with a minimum of drag; every part of the bodywork is designed with this aim in mind. Like most open wheeler cars they feature large front and rear aerofoils, but they are far more developed than American open wheel racers, which depend more on suspension tuning; for instance, the nose is raised above the centre of the front aerofoil, allowing its entire width to provide downforce. The front and rear wings are highly sculpted and extremely fine 'tuned', along with the rest of the body such as the turning vanes beneath the nose, bargeboards, sidepods, underbody, and the rear diffuser. They also feature aerodynamic appendages that direct the airflow. Such an extreme level of aerodynamic development means that an F1 car produces much more downforce than any other open-wheel formula; for example the Indycars produce downforce equal to their weight at Template:Auto km/h, while an F1 car achieves the same downforce:weight ratio of 1:1 at Template:Auto km/h to Template:Auto km/h, and at Template:Auto km/h the ratio is roughly 2:1. Therefore, theoretically, F1 cars can drive upside down from Template:Auto km/h.[3]

Ground effects

F1 regulations heavily limit the effect of ground effect aerodynamics, which are a highly efficient means of creating downforce with a relatively small drag penalty. The underside of the vehicle, the undertray, must be flat between the axles. A 10mm thick wooden plank or skidblock runs down the middle of the car to prevent the cars from running low enough to contact the track surface; this skidblock is measured before and after a race. Should the plank be less than 9mm thick after the race, the car is disqualified.

A substantial amount of downforce is provided by using a rear diffuser which rises from the undertray at the rear axle to the actual rear of the bodywork. The limitations on ground effects, limited size of the wings (requiring use at high angles of attack to create sufficient downforce), and vortices created by open wheels lead to a high aerodynamic drag coefficient (about 1 according to Minardi's technical director Gabriele Tredozi[4]; compare with the average modern saloon car, which has a Cd value between 0.25-0.35), so that, despite the enormous power output of the engines, the top speed of these cars is less than that of World War II vintage Mercedes-Benz and Auto Union Silver Arrows racers. However, this drag is more than compensated for by the ability to corner at extremely high speed. The aerodynamics are adjusted for each track; with a relatively low drag configuration for tracks where high speed is relatively more important like Autodromo Nazionale Monza, and a high traction configuration for tracks where cornering is more important, like the Circuit de Monaco.

Regulations

The FIA is hoping to rid F1 of small winglets and other parts of the car (minus the front and rear wing) used to manipulate the airflow of the car. This is in order to not only decrease downforce, but also to increase drag. As it is now, the front wing is shaped specifically to push air towards all the winglets and bargeboards so that the airflow is smooth. Should these be removed, various parts of the car will cause great drag when the front wing is unable to shape the air past the body of the car. New regulations are also being developed to replace the traditional F1 rear wing with two smaller wings over each of the rear wheels. Dubbed the "Centreline Downwash Generating Wing", the smaller wings reduce the turbulent airflow inherent in traditional F1 rear wings and result in a significant increase in a trailing driver's ability to pass a leading car using slipstreaming.

Construction

The cars are constructed from composites of carbon fibre and similar ultra-lightweight (and incredibly expensive to manufacture) materials. The minimum weight permissible is Template:Auto kg including the driver, fluids and on-board cameras. However, all F1 cars weigh significantly less than this (some as little as 440 kg) so teams add ballast to the cars to bring them up to the minimum legal weight. The advantage of using ballast is that it can be placed anywhere in the car to provide ideal weight distribution.

Steering wheel

A modern Ferrari steering wheel, with a complex array of dials, knobs and buttons.

The driver has the ability to fine tune many elements of the race car from within the machine using the steering wheel. The wheel can be used to alter traction control settings, change gears, apply rev limiter, adjust fuel air mix, change brake pressure and call the radio. Data such as rpm, laptimes, speed and gear is displayed on an LCD screen. The wheel alone can cost about $40,000, and with carbon fibre construction, weighs in at 1.3 kilograms.

Fuel

The fuel used in F1 cars is fairly similar to ordinary gasoline, albeit with a far more tightly controlled mix. Formula One fuel cannot contain compounds that are not found in commercial gasoline, in contrast to alcohol-based fuels used in American open-wheel racing. Blends are tuned for maximum performance in given weather conditions or different circuits. During the period when teams were limited to a specific volume of fuel during a race, exotic high-density fuel blends were used which were actually heavier than water, since the energy content of a fuel depends on its mass density.

To make sure that the teams and fuel suppliers are not violating the fuel regulations, the FIA requires Elf, Shell, Mobil, and the other fuel teams to submit a sample of the fuel they are providing for a race. At any time, FIA inspectors can request a sample from the fueling rig to compare the "fingerprint" of what is in the car during the race with what was submitted. The teams usually abide by this rule, but in 1997, Mika Häkkinen was stripped of his third place finish at Spa-Francorchamps in Belgium after the FIA determined that his fuel was not the correct formula, as well as in 1976, both McLaren and Penske cars were forced to the rear of the Italian Grand Prix after the octane mixture was found to be too high.

Tyres

By regulation, the tyres feature a minimum of four grooves in them, with the intention of slowing the cars down (a slick tyre, with no indentations, is best in dry conditions). They can be no wider than Template:Auto mm and Template:Auto mm at the front and rear respectively. Unlike the fuel, the tyres bear only a superficial resemblance to a normal road tyre. Whereas a roadcar tyre has a useful life of up to 80,000 km, in 2005, a Formula One tyre is built to last just one race distance (a little over 300 km). This is the result of a drive to maximize the road-holding ability, leading to the use of very soft compounds (to ensure that the tyre surface conforms to the road surface as closely as possible). However, tyre changes were re-instated in 2006, following the dramatic and highly political 2005 United States Grand Prix.

Since the start of the 2007 season Bridgestone is the sole tyre supplier and have introduced four compounds of tyre, two of which will be made available at each race. The harder tyre is more durable but gives less grip, and the softer tyre gives more grip but is less durable. Both compounds have to be used by teams in a race and the softer tyre has a painted white stripe in the second groove. This was introduced after the first race of the season when confusion occurred because a small dot was put instead of the white stripe. Each team must use each specification during the race, unless wet or intermediate tyres are used during the race, in which case this rule no longer applies.

Brakes

Brake discs on the Williams FW27.

Disc brakes consist of a rotor and caliper at each wheel. Expensive carbon-carbon (the same material used on the Space Shuttle) composite rotors - introduced by the Brabham team in 1976 - are used instead of steel or cast iron because of their superior frictional, thermal, and anti-warping properties, as well as significant weight savings. These brakes are designed and manufactured to work in extreme temperatures, up to 1,000 degrees Celsius. The driver can control brake force distribution fore and aft to compensate for changes in track conditions or fuel load. Regulations specify this control has to be manual, not electronic.

An average F1 car can decelerate from 100-0 km/h (62-0 mph) in about 17 metres (55 ft), compared with a Dodge Viper (considered one of the best mass-production street cars for braking), which takes around 34 metres (112 ft). When braking from higher speeds, aerodynamic downforce enables tremendous deceleration: 4.5 g to 5.0 g (44.1 to 49 m/s²), and up to 5.5 g at the high-speed circuits such as the Circuit Gilles Villeneuve (Canadian GP) and the Autodromo Nazionale Monza (Italian GP). This contrasts with 1.0 g to 1.5 g for the best sports cars (the Bugatti Veyron is claimed to be able to brake at 1.3 g). An F1 car can brake from 200 km/h (124 mph) to a complete stop just 2.9 seconds, using only 65 meters (213 ft).[5]

Performance

Grand Prix cars and the cutting edge technology that constitute them produce an unprecedented combination of outright speed and quickness for the drivers. Every F1 car on the grid is capable of going from 0 to 160 km/h (100 mph) and back to 0 in less than five seconds. During a demonstration at the Silverstone circuit in Britain, an F1 McLaren-Mercedes car driven by David Coulthard gave a pair of Mercedes-Benz street cars a head start of seventy seconds, and was able to beat the cars to the finish line from a standing start.

As well as being fast in a straight line, F1 cars also have incredible cornering ability. Grand Prix cars can negotiate corners at significantly higher speeds than other racing cars because of the intense levels of grip and downforce. Cornering speed is so high that Formula One drivers have strength training routines just for the neck muscles . Former F1 driver Juan Pablo Montoya claims to be able to perform 300 reps of 50 pounds with his neck. Since most tracks are clockwise, most drivers have the neck muscles built up on one side of their neck[citation needed], thus making anti-clockwise tracks (such as Imola, Istanbul Park and Interlagos) a much more testing race than even the high speed Monza or the tight and narrow Monaco.

The combination of light weight (605 kg in race trim), power (950 bhp with the 3.0 L V10, Template:Auto bhp with the 2007 regulation 2.4 L V8), aerodynamics, and ultra-high performance tyres is what gives the F1 car its performance figures. The principal consideration for F1 designers is acceleration, and not simply top speed. Acceleration is not just linear forward acceleration, but three types of acceleration can be considered for an F1 car's, and all cars' in general, performance:

  • Forward acceleration
  • Forward deceleration (under braking)
  • Turning acceleration (centripetal acceleration)

Unless a car is to be raced solely on high-speed ovals (where only top speed matters), all three accelerations should be maximised. The way these three accelerations are obtained and their values are:

Forward acceleration

The 2006 F1 cars have a power-to-weight ratio of Template:Auto hp/tonne (0.9 kW/kg). Theoretically this would allow the car to reach Template:Auto km/h in less than 1 second. However the massive power cannot be converted to motion at low speeds due to traction loss, and the usual figure is 2 seconds to reach Template:Auto km/h. After about Template:Auto km/h traction loss is minimal due to the combined effect of the car moving faster and the downforce, hence the car continues accelerating at a very high rate. The figures are (for the 2006 Renault R26):

0 to Template:Auto km/h: 2.0 seconds
0 to Template:Auto km/h: 3.9 seconds
0 to Template:Auto km/h: 8.6 seconds*
  • Figures may alter slightly depending on the aerodynamic setup.

The acceleration figure is usually 2.46 g (24.1 m/s²) up to Template:Auto km/h, which means the driver is pushed back in the seat with 2.46 times his bodyweight.

Deceleration

The carbon brakes in combination with the aerodynamics produces truly remarkable braking forces. The deceleration force under braking is usually 4 g (39 m/s²), and can be as high as 5-6 g when braking from extreme speeds, for instance at the Gilles Villeneuve circuit or at Indianapolis. Here the aerodynamic drag actually helps, and can contribute as much as 1.0 g of braking force, which is the equivalent of the brakes on most sports cars. In other words, if the throttle is let go, the F1 car will slow down under drag at the same rate as most sports cars do with braking, at least at speeds above Template:Auto km/h. The drivers do not utilise engine or compression braking, although it may seem this way. The only reason they change down gears prior to entering the corner is to be in the correct gear for maximum acceleration on the exit of the corner.

There are three companies who manufacture brakes for Formula One. They are Hitco, (based in the US, part of the SGL Carbon Group), Brembo in Italy and Carbone Industrie of France. Whilst Hitco manufacture their own carbon/carbon, Brembo sources theirs from Honeywell, and Carbone Industrie purchases their carbon from Messier Bugatti.

Carbon/Carbon is a short name for carbon fibre reinforced carbon. This means carbon fibres strengthening a matrix of carbon, which is added to the fibres by way of matrix deposition (CVI or CVD) or by pyrolosis of a resin binder.

F1 brakes are 278 mm (10.9 in) in diameter and a maximum of 28 mm (1.1 in) thick. The carbon/carbon brake pads are actuated by 6-piston opposed calipers provided by AP Racing or Brembo. The calipers are aluminium alloy bodied with titanium pistons. The regulation limits the modulus of the caliper material to prevent teams using exotic, high specific stiffness materials. Titanium pistons save weight, but also have a low thermal conductivity, reducing the heat flow into the brake fluid.

Turning acceleration

As mentioned above, the car can accelerate to Template:Auto km/h very quickly, however the top speeds are not much higher than Template:Auto km/h at most circuits, being highest at Monza (360 km/h in 2006), Indianapolis and Gilles Villeneuve (about Template:Auto km/h at both). This is because the top speeds are sacrificed for the turning speeds. An F1 car is designed principally for high-speed cornering, thus the aerodynamic elements can produce as much as three times the car's weight in downforce, at the expense of drag. In fact, at a speed of just Template:Auto km/h, the downforce equals the weight of the car. As the speed of the car rises, the downforce increases. The turning force at low speeds (below 70 to about 100 km/h) mostly comes from the so-called 'mechanical grip' of the tyres themselves. At such low speeds the car can turn at 2.0 g. At Template:Auto km/h already the turning acceleration is 3.0g, as evidenced by the famous esses (turns 3 and 4) at the Suzuka circuit. Higher-speed corners such as Blanchimont (Circuit de Spa-Francorchamps) and Copse (Silverstone Circuit) are taken at above 5.0g, and 6.0g[citation needed] has been recorded at Suzuka's 130-R corner[6]. This contrasts with 1g for the Enzo Ferrari, one of the best racing sports cars.

These turning accelerative forces allow an F1 car to corner at amazing speeds, seeming to defy the laws of physics. As an example of the extreme cornering speeds, the Blanchimont and Eau Rouge corners at Spa-Francorchamps are taken flat-out at above Template:Auto km/h, whereas the race-spec GT cars in the ETCC can only do so at 150–160 km/h. A newer and perhaps even more extreme example is the Turn 8 at the Istanbul Park circuit, a 190° relatively tight 4-apex corner, in which the cars maintain speeds between Template:Auto km/h and 285 km/h (in 2006) and experience between 4.5g and 5.5g for 7 seconds - the longest sustained hard cornering in Formula 1 (and hence all motorsport).

Top Speeds

Top speeds are in practice limited by the longest straight at the track and by the need to balance the car's aerodynamic configuration between high straight line speed (low downforce) and high cornering speed (high downforce) to achieve the fastest lap time.[7] During the 2006 season, the top speeds of Formula 1 cars are a little over 300 km/h (186 mph) at high-downforce tracks such as Albert Park, Australia and Sepang, Malaysia. These speeds are down by some Template:Auto km/h from the 2005 speeds, and Template:Auto km/h from the 2004 speeds, due to the recent performance restrictions (see below). On low-downforce circuits greater top speeds are registered: at Gilles-Villeneuve (Canada) 325 km/h (203 mph), at Indianapolis (USA) 335 km/h (210 mph), and at Monza (Italy) 360 km/h (225 mph). In the Italian Grand Prix 2004, Antônio Pizzonia of BMW WilliamsF1 team recorded a top speed of 369.9 kilometers per hour.[8]

Away from the track, the BAR Honda team used a modified BAR 007 car, which they claim complied with FIA Formula One regulations, to set an unofficial speed record of 413 km/h (257 mph) on a one way straight line run on 6 November 2005 during a shakedown ahead of their Bonneville 400 record attempt. The car was optimised for top speed with only enough downforce to prevent it leaving the ground. The car, badged as a Honda following their takeover of BAR at the end of 2005, set an FIA ratified record of Template:Auto km/h on a one way run on 21 July 2006 at Bonneville Salt Flats.[9] On this occasion the car did not fully meet FIA Formula One regulations, as it used a moveable aerodynamic rudder for stability control, breaching article 3.15 of the 2006 Formula One technical regulations which states that any specific part of the car influencing its aerodynamic performance must be rigidly secured.[10]

Recent FIA performance restrictions

In an effort to reduce speeds and increase driver safety, the FIA has continuously introduced new rules for F1 constructors since the 80s.

These rules have included the banning of such things as the "wing car" (ground effect) in 1983, the turbo in 1989, active suspension and traction control in 1994, the introduction of grooved tyres in 1998 and the change from V10 to V8 engines in 2006. Yet despite these changes, constructors continued to extract performance gains by increasing power and aerodynamic efficiency. As a result, the pole position speed at many circuits in comparable weather conditions dropped between 1.5 and 3 seconds in 2004 over the prior year's times. In 2006 the engine power was reduced from 950 bhp to 750 bhp (710 to 560 kW) by going from the 3.0 L V10s, used for over a decade, to 2.4 L V8s. This new engines were capable of achieving over 20,000 rpm. The aerodynamic restrictions introduced in 2005 meant to reduce downforce by about 30%, however most teams were able to successfully reduce this to a mere 5 to 10% downforce loss. For the 2007 season, teams are not allowed to make modification to the engines and they have been limited to 19,000 rpm.

References

  1. ^ "The Future of the FIA Formula One World Championship" (Press release). FIA. 2006-08-07.
  2. ^ F1 Racing magazine - December issue.
  3. ^ The Official Formula 1 Website Retrieved 17 July 2007
  4. ^ "Interview with Gabriele Tredozi". www.f1technical.net. Retrieved 2007-08-16.
  5. ^ F1Technical.com web site Retrieved 21 July 2007
  6. ^ "Car Reviews: evo Car Reviews". Retrieved 2007-08-16.
  7. ^ The importance of aerodynamics www.f1technical.net Retrieved 26 January 2007
  8. ^ Record speed and points for BMW WilliamsF1 Team Retrieved 16th August 2007
  9. ^ News: 'FIA ratify Honda Racing F1 Team's Bonneville records' (15 November 2006) and 'Bonneville team crack 400 in Mojave' (6 November 2005) 'Bonneville 400' Retrieved 24 January 2007
  10. ^ 2006 Formula One Technical Regulations www.fia.com Retrieved 24 January 2007

External links