The triangle  function , also tri  function, triangle  function or tent  function, is a mathematical function  with the following definition:
  
    
      
        
          
            
              
                tri 
                 
                ( 
                t 
                ) 
                = 
                ∧ 
                ( 
                t 
                ) 
                 
               
              
                 
                
                  
                    = 
                    
                       
                      
                        d 
                        e 
                        f 
                       
                     
                   
                 
                  
                Max 
                ( 
                1 
                - 
                
                  | 
                 
                t 
                
                  | 
                 
                , 
                0 
                ) 
               
             
            
               
              
                 
                = 
                
                  
                    { 
                    
                      
                        
                          1 
                          - 
                          
                            | 
                           
                          t 
                          
                            | 
                           
                          , 
                         
                        
                          
                            | 
                           
                          t 
                          
                            | 
                           
                          < 
                          1 
                         
                       
                      
                        
                          0 
                          , 
                         
                        
                          
                            
                              otherwise 
                             
                           
                         
                       
                     
                     
                   
                 
               
             
           
         
       
     
    {\ displaystyle {\ begin {aligned} \ operatorname {tri} (t) = \ land (t) \ quad & {\ overset {\ underset {\ mathrm {def}} {}} {=}} \ \ max ( 1- | t |, 0) \\ & = {\ begin {cases} 1- | t |, & | t | <1 \\ 0, & {\ mbox {otherwise}} \ end {cases}} \ end {aligned}}} 
   
  .  
Equivalent to this, it can also be defined as a convolution of  the rectangular function   with itself, as is clearly shown in the figure below:
  
    
      
        rect 
       
     
    {\ displaystyle \ operatorname {rect}} 
   
 
  
    
      
        
          
            
              
                tri 
                 
                ( 
                t 
                ) 
                = 
                rect 
                 
                ( 
                t 
                ) 
                ∗ 
                rect 
                 
                ( 
                t 
                ) 
                 
               
              
                 
                
                  
                    = 
                    
                      d 
                      e 
                      f 
                     
                   
                 
                
                  ∫ 
                  
                    - 
                    ∞ 
                   
                  
                    ∞ 
                   
                 
                
                  r 
                  e 
                  c 
                  t 
                 
                ( 
                τ 
                ) 
                ⋅ 
                
                  r 
                  e 
                  c 
                  t 
                 
                ( 
                t 
                - 
                τ 
                ) 
                  
                d 
                τ 
               
             
            
               
              
                 
                = 
                
                  ∫ 
                  
                    - 
                    ∞ 
                   
                  
                    ∞ 
                   
                 
                
                  r 
                  e 
                  c 
                  t 
                 
                ( 
                τ 
                ) 
                ⋅ 
                
                  r 
                  e 
                  c 
                  t 
                 
                ( 
                τ 
                - 
                t 
                ) 
                  
                d 
                τ 
               
             
           
         
       
     
    {\ displaystyle {\ begin {aligned} \ operatorname {tri} (t) = \ operatorname {rect} (t) * \ operatorname {rect} (t) \ quad & {\ overset {\ mathrm {def}} {= }} \ int _ {- \ infty} ^ {\ infty} \ mathrm {rect} (\ tau) \ cdot \ mathrm {rect} (t- \ tau) \ d \ tau \\ & = \ int _ {- \ infty} ^ {\ infty} \ mathrm {rect} (\ tau) \ cdot \ mathrm {rect} (\ tau -t) \ d \ tau \ end {aligned}}} 
   
  .  
   
Convolution of two rectangular functions results in the triangular function
 
  
The triangle function can be scaled using a parameter :
  
    
      
        a 
        ≠ 
        0 
       
     
    {\ displaystyle a \ neq 0} 
   
 
  
    
      
        
          
            
              
                tri 
                 
                ( 
                t 
                
                  / 
                 
                a 
                ) 
               
              
                 
                = 
                
                  
                    { 
                    
                      
                        
                          1 
                          - 
                          
                            | 
                           
                          t 
                          
                            / 
                           
                          a 
                          
                            | 
                           
                          , 
                         
                        
                          
                            | 
                           
                          t 
                          
                            | 
                           
                          < 
                          
                            | 
                           
                          a 
                          
                            | 
                           
                         
                       
                      
                        
                          0 
                          , 
                         
                        
                          
                            
                              otherwise 
                             
                           
                          . 
                         
                       
                     
                     
                   
                 
               
             
           
         
       
     
    {\ displaystyle {\ begin {aligned} \ operatorname {tri} (t / a) & = {\ begin {cases} 1- | t / a |, & | t | <| a | \\ 0, & {\ mbox {otherwise}}. \ end {cases}} \ end {aligned}}} 
   
  
The triangle function is mainly used in the field of signal processing  for the representation of idealized signal curves. In addition to the Gaussian function  , the Heaviside function  and the rectangular function, it is used to describe elementary signals. Technical applications are in the area of optimal filters  or window functions  such as the Bartlett window  .
The Fourier transformation of  the triangle function gives the squared si function  :
  
    
      
        
          
            
              
                
                  
                    F. 
                   
                 
                { 
                tri 
                 
                ( 
                t 
                ) 
                } 
               
              
                 
                = 
                
                  
                    s 
                    i 
                   
                  
                    2 
                   
                 
                ( 
                π 
                f 
                ) 
                . 
               
             
           
         
       
     
    {\ displaystyle {\ begin {aligned} {\ mathcal {F}} \ {\ operatorname {tri} (t) \} & = \ mathrm {si} ^ {2} (\ pi f). \ end {aligned} }} 
   
  
General form  
In general, one would like to scale the triangle function. The stretching in the x-direction and the height at the top are of interest here. Half the period, i.e. the distance from the start of the triangular function to the center point, is used for the stretching . The height at the point is through
  
    
      
        T 
       
     
    {\ displaystyle T} 
   
 
  
    
      
        
          t 
          
            0 
           
         
       
     
    {\ displaystyle t_ {0}} 
   
 
  
    
      
        
          t 
          
            0 
           
         
       
     
    {\ displaystyle t_ {0}} 
   
 
  
    
      
        a 
        ⋅ 
        tri 
         
        
          ( 
          
            
              
                t 
                - 
                
                  t 
                  
                    0 
                   
                 
               
              T 
             
           
          ) 
         
       
     
    {\ displaystyle a \ cdot \ operatorname {tri} \ left ({\ frac {t-t_ {0}} {T}} \ right)} 
   
  
given.
Derivation  
The derivative of the triangle function is a sum of two rectangular   functions:
  
    
      
        rect 
       
     
    {\ displaystyle \ operatorname {rect}} 
   
 
  
    
      
        
          
            a 
            T 
           
         
        
          ( 
          
            rect 
             
            
              ( 
              
                
                  
                    t 
                    - 
                    ( 
                    
                      t 
                      
                        0 
                       
                     
                    - 
                    T 
                    
                      / 
                     
                    2 
                    ) 
                   
                  T 
                 
               
              ) 
             
            - 
            rect 
             
            
              ( 
              
                
                  
                    t 
                    - 
                    ( 
                    
                      t 
                      
                        0 
                       
                     
                    + 
                    T 
                    
                      / 
                     
                    2 
                    ) 
                   
                  T 
                 
               
              ) 
             
           
          ) 
         
       
     
    {\ displaystyle {\ frac {a} {T}} \ left (\ operatorname {rect} \ left ({\ frac {t- (t_ {0} -T / 2)} {T}} \ right) - \ operatorname {rect} \ left ({\ frac {t- (t_ {0} + T / 2)} {T}} \ right) \ right)} 
   
  
which can also be represented as the sum of three jump functions   :
  
    
      
        ϵ 
       
     
    {\ displaystyle \ epsilon} 
   
 
  
    
      
        
          
            a 
            T 
           
         
        
          ( 
          
            
              ϵ 
             
             
            ( 
            t 
            - 
            ( 
            
              t 
              
                0 
               
             
            - 
            T 
            ) 
            ) 
            - 
            2 
            
              ϵ 
             
             
            ( 
            t 
            - 
            
              t 
              
                0 
               
             
            ) 
            + 
            
              ϵ 
             
             
            ( 
            t 
            - 
            ( 
            
              t 
              
                0 
               
             
            + 
            T 
            ) 
            ) 
           
          ) 
         
        , 
       
     
    {\ displaystyle {\ frac {a} {T}} \ left (\ operatorname {\ epsilon} (t- (t_ {0} -T)) - 2 \ operatorname {\ epsilon} (t-t_ {0}) + \ operatorname {\ epsilon} (t- (t_ {0} + T)) \ right),} 
   
  
where the period, the center and the height of the triangular function represent. The prefactor therefore appears as the slope of the triangle function in the derivative.
  
    
      
        2 
        T 
       
     
    {\ displaystyle 2T} 
   
 
  
    
      
        
          t 
          
            0 
           
         
       
     
    {\ displaystyle t_ {0}} 
   
 
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
 
  
    
      
        
          
            
              a 
              T 
             
           
         
       
     
    {\ displaystyle {\ tfrac {a} {T}}} 
   
 
Triangular oscillation  
In contrast to the triangle function  shown here, a triangular oscillation is a periodic function  that results from the periodic continuation of  the interval , generally supplemented by a constant offset. A triangular oscillation in the narrower sense does not contain a  constant component  , so the minima and maxima are  equal  in terms of amount.
  
    
      
        [ 
        - 
        1 
        , 
        1 
        ] 
       
     
    {\ displaystyle [-1.1]} 
   
  
The function
  
    
      
        Δ 
        ( 
        t 
        ) 
        = 
        2 
        a 
        ⋅ 
        
          | 
          
            Max 
            ( 
            1 
            - 
            ( 
            ( 
            2 
            f 
            ⋅ 
            t 
            ) 
            
              mod 
              
                2 
               
             
            ) 
            , 
            - 
            1 
            ) 
           
          | 
         
        - 
        a 
       
     
    {\ displaystyle \ Delta (t) = 2a \ cdot \ left | \ max (1 - ((2f \ cdot t) {\ bmod {2}}), - 1) \ right | -a} 
   
  
or the Fourier series
  
    
      
        
          
            
              8th 
              a 
             
            
              π 
              
                2 
               
             
           
         
        ⋅ 
        
          ∑ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          
            
              cos 
               
              ( 
              ( 
              2 
              n 
              - 
              1 
              ) 
              ⋅ 
              ω 
              ⋅ 
              t 
              ) 
             
            
              ( 
              2 
              n 
              - 
              1 
              
                ) 
                
                  2 
                 
               
             
           
         
       
     
    {\ displaystyle {\ frac {8a} {\ pi ^ {2}}} \ cdot \ sum _ {n = 1} ^ {\ infty} {\ frac {\ cos ((2n-1) \ cdot \ omega \ cdot t)} {(2n-1) ^ {2}}}} 
   
  
omega with for the amplitude and for the angular frequency  generates a continuous triangular signal.
  
    
      
        a 
       
     
    {\ displaystyle a} 
   
 
  
    
      
        ω 
       
     
    {\ displaystyle \ omega} 
   
  
Generalized and with the sine basic function of the form
  
    
      
        a 
        ( 
        t 
        ) 
        = 
        
          
            
              a 
              ^ 
             
           
         
        ⋅ 
        sin 
         
        ( 
        ω 
        t 
        + 
        φ 
        ) 
       
     
    {\ displaystyle a (t) = {\ widehat {a}} \ cdot \ sin (\ omega t + \ varphi)} 
   
  
in harmony follows:
  
    
      
        Δ 
        ( 
        t 
        ) 
        = 
        2 
        a 
        ⋅ 
        
          | 
          
            Max 
            ( 
            1 
            - 
            ( 
            ( 
            2 
            f 
            ⋅ 
            ( 
            t 
            - 
            T 
            
              
                
                  2 
                  φ 
                  + 
                  π 
                 
                
                  4th 
                  π 
                 
               
             
            ) 
            
              mod 
              
                2 
               
             
            ) 
            ) 
            , 
            - 
            1 
            ) 
           
          | 
         
        - 
        a 
       
     
    {\ displaystyle \ Delta (t) = 2a \ cdot \ left | \ max (1 - ((2f \ cdot (tT {\ frac {2 \ varphi + \ pi} {4 \ pi}})) {\ bmod {2 }})), - 1) \ right | -a} 
   
  .  
source  
Hans Dieter Lüke: Signal transmission  . 6th edition. Springer Verlag, 1995, ISBN 3-540-54824-6  .  
  
 
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">