A factorial prime number is a prime number that is one greater or smaller than a factorial , i.e. a prime number of the form
-
.
The first faculty primes
The first 10 faculty primes are
-
2 (0! + 1 or 1! + 1), 3 (2! + 1), 5 (3! - 1), 7 (3! + 1), 23 (4! - 1), 719 (6! - 1), 5039 (7! - 1), 39916801 (11! + 1), 479001599 (12! - 1), 87178291199 (14! - 1), ... (see episode A088054 in OEIS ).
n! - 1 is a prime number for
-
n = 3, 4, 6, 7, 12, 14, 30, 32, 33, 38, 94, 166, 324, 379, 469, 546, 974, 1963, 3507, 3610, 6917, 21480, 34790, 94550, 103040, 147855, 208003,… (sequence A002982 in OEIS , resulting in 27 faculty primes ).
n! + 1 is a prime number for
-
n = 1, 2, 3, 11, 27, 37, 41, 73, 77, 116, 154, 320, 340, 399, 427, 872, 1477, 6380, 26951, 110059, 150209, ... (sequence A002981 in OEIS resulting in 22 factorial primes).
Up to now (as of December 2016) , no other than the listed 49 faculty prime numbers are known.
swell
|
|
formula based
|
Carol ((2 n - 1) 2 - 2) |
Cullen ( n ⋅2 n + 1) |
Double Mersenne (2 2 p - 1 - 1) |
Euclid ( p n # + 1) |
Factorial ( n! ± 1) |
Fermat (2 2 n + 1) |
Cubic ( x 3 - y 3 ) / ( x - y ) |
Kynea ((2 n + 1) 2 - 2) |
Leyland ( x y + y x ) |
Mersenne (2 p - 1) |
Mills ( A 3 n ) |
Pierpont (2 u ⋅3 v + 1) |
Primorial ( p n # ± 1) |
Proth ( k ⋅2 n + 1) |
Pythagorean (4 n + 1) |
Quartic ( x 4 + y 4 ) |
Thabit (3⋅2 n - 1) |
Wagstaff ((2 p + 1) / 3) |
Williams (( b-1 ) ⋅ b n - 1)
Woodall ( n ⋅2 n - 1)
|
Prime number follow
|
Bell |
Fibonacci |
Lucas |
Motzkin |
Pell |
Perrin
|
property-based
|
Elitist |
Fortunate |
Good |
Happy |
Higgs |
High quotient |
Isolated |
Pillai |
Ramanujan |
Regular |
Strong |
Star |
Wall – Sun – Sun |
Wieferich |
Wilson
|
base dependent
|
Belphegor |
Champernowne |
Dihedral |
Unique |
Happy |
Keith |
Long |
Minimal |
Mirp |
Permutable |
Primeval |
Palindrome |
Repunit ((10 n - 1) / 9) |
Weak |
Smarandache – Wellin |
Strictly non-palindromic |
Strobogrammatic |
Tetradic |
Trunkable |
circular
|
based on tuples
|
Balanced ( p - n , p , p + n) |
Chen |
Cousin ( p , p + 4) |
Cunningham ( p , 2 p ± 1, ...) |
Triplet ( p , p + 2 or p + 4, p + 6) |
Constellation |
Sexy ( p , p + 6) |
Safe ( p , ( p - 1) / 2) |
Sophie Germain ( p , 2 p + 1) |
Quadruplets ( p , p + 2, p + 6, p + 8) |
Twin ( p , p + 2) |
Twin bi-chain ( n ± 1, 2 n ± 1, ...)
|
according to size
|
Titanic (1,000+ digits) |
Gigantic (10,000+ digits) |
Mega (1,000,000+ digits) |
Beva (1,000,000,000+ positions)
|
Composed
|
Carmichael |
Euler's pseudo |
Almost |
Fermatsche pseudo |
Pseudo |
Semi |
Strong pseudo |
Super Euler's pseudo
|