The rectangular function  , also called rect  function, is a discontinuous   mathematical function  with the following definition:
  
    
      
        rect 
         
        ( 
        t 
        ) 
        = 
        ⊓ 
        ( 
        t 
        ) 
        = 
        
          
            { 
            
              
                
                  0 
                 
                
                  
                    if  
                   
                  
                    | 
                   
                  t 
                  
                    | 
                   
                  > 
                  
                    
                      1 
                      2 
                     
                   
                 
               
              
                
                  
                    
                      1 
                      2 
                     
                   
                 
                
                  
                    
                      if  
                     
                   
                  
                    | 
                   
                  t 
                  
                    | 
                   
                  = 
                  
                    
                      1 
                      2 
                     
                   
                 
               
              
                
                  1 
                 
                
                  
                    if  
                   
                  
                    | 
                   
                  t 
                  
                    | 
                   
                  < 
                  
                    
                      1 
                      2 
                     
                   
                  . 
                 
               
             
             
           
         
       
     
    {\ displaystyle \ operatorname {rect} (t) = \ sqcap (t) = {\ begin {cases} 0 & {\ text {if}} | t |> {\ frac {1} {2}} \\ [3pt ] {\ frac {1} {2}} & {\ mbox {if}} | t | = {\ frac {1} {2}} \\ [3pt] 1 & {\ text {if}} | t | < {\ frac {1} {2}}. \ end {cases}}} 
   
  
Alternative definitions, which are particularly common in the field of signal processing  , define the rectangular function in simplified form as: 
  
    
      
        
          r 
          e 
          c 
          
            t 
            
              d 
             
           
         
         
        ( 
        t 
        ) 
        = 
        
          
            { 
            
              
                
                  1 
                 
                
                  
                    if  
                   
                  
                    | 
                   
                  t 
                  
                    | 
                   
                  ≤ 
                  
                    
                      1 
                      2 
                     
                   
                 
               
              
                
                  0 
                 
                
                  
                    if  
                   
                  
                    | 
                   
                  t 
                  
                    | 
                   
                  > 
                  
                    
                      1 
                      2 
                     
                   
                  . 
                 
               
             
             
           
         
       
     
    {\ displaystyle \ operatorname {rect_ {d}} (t) = {\ begin {cases} 1 & {\ text {if}} | t | \ leq {\ frac {1} {2}} \\ [3pt] 0 & {\ text {if}} | t |> {\ frac {1} {2}}. \ end {cases}}} 
   
  
General  
The rectangle function can also be expressed using the Heaviside function   as:
  
    
      
        Θ 
        ( 
        x 
        ) 
       
     
    {\ displaystyle \ Theta (x)} 
   
 
  
    
      
        rect 
         
        ( 
        t 
        ) 
        = 
        Θ 
        
          ( 
          
            t 
            + 
            
              
                1 
                2 
               
             
           
          ) 
         
        ⋅ 
        Θ 
        
          ( 
          
            
              
                1 
                2 
               
             
            - 
            t 
           
          ) 
         
        = 
        Θ 
        
          ( 
          
            t 
            + 
            
              
                1 
                2 
               
             
           
          ) 
         
        - 
        Θ 
        
          ( 
          
            t 
            - 
            
              
                1 
                2 
               
             
           
          ) 
         
       
     
    {\ displaystyle \ operatorname {rect} (t) = \ Theta \ left (t + {\ frac {1} {2}} \ right) \ cdot \ Theta \ left ({\ frac {1} {2}} - t \ right) = \ Theta \ left (t + {\ frac {1} {2}} \ right) - \ Theta \ left (t - {\ frac {1} {2}} \ right)} 
   
  .  
It is set.
  
    
      
        Θ 
        ( 
        0 
        ) 
        = 
        
          
            
              1 
              2 
             
           
         
       
     
    {\ displaystyle \ Theta (0) = {\ tfrac {1} {2}}} 
   
 
The Fourier transformation of  the rectangular function results in the sinc function   :
  
    
      
        sinc 
         
        ( 
        x 
        ) 
        = 
        sin 
         
        ( 
        π 
        x 
        ) 
        
          / 
         
        ( 
        π 
        x 
        ) 
       
     
    {\ displaystyle \ operatorname {sinc} (x) = \ sin (\ pi x) / (\ pi x)} 
   
 
  
    
      
        
          
            F. 
           
         
        { 
        rect 
         
        ( 
        t 
        ) 
        } 
        = 
        sinc 
         
        ( 
        f 
        ) 
       
     
    {\ displaystyle {\ mathcal {F}} \ {\ operatorname {rect} (t) \} = \ operatorname {sinc} (f)} 
   
  
This also applies to . The opposite is true
  
    
      
        
          r 
          e 
          c 
          
            t 
            
              d 
             
           
         
         
        ( 
        t 
        ) 
       
     
    {\ displaystyle \ operatorname {rect_ {d}} (t)} 
   
 
  
    
      
        
          
            F. 
           
         
        { 
        sinc 
         
        ( 
        t 
        ) 
        } 
        = 
        rect 
         
        ( 
        f 
        ) 
       
     
    {\ displaystyle {\ mathcal {F}} \ {\ operatorname {sinc} (t) \} = \ operatorname {rect} (f)} 
   
  .  
Here it is important to use the first definition of the rectangular function, for the last equation is wrong.
  
    
      
        
          r 
          e 
          c 
          
            t 
            
              d 
             
           
         
       
     
    {\ displaystyle \ operatorname {rect_ {d}}} 
   
 
Shifting and scaling  
A rectangular function centered at and having a duration of is expressed by
  
    
      
        
          t 
          
            0 
           
         
       
     
    {\ displaystyle t_ {0}} 
   
 
  
    
      
        T 
       
     
    {\ displaystyle T} 
   
 
  
    
      
        rect 
         
        
          ( 
          
            
              
                t 
                - 
                
                  t 
                  
                    0 
                   
                 
               
              T 
             
           
          ) 
         
         
        . 
       
     
    {\ displaystyle \ operatorname {rect} \ left ({\ frac {t-t_ {0}} {T}} \ right) \ ,.} 
   
  
Derivation  
As a discontinuous function, the rectangular function is neither differentiable in the classical sense nor is it weakly differentiable  . However, it is possible to derive a distribution  through the Dirac delta distribution   :
  
    
      
        δ 
       
     
    {\ displaystyle \ delta} 
   
 
  
    
      
        
          rect 
          ′ 
         
         
        ( 
        t 
        ) 
        = 
        δ 
        
          ( 
          
            t 
            + 
            
              
                1 
                2 
               
             
           
          ) 
         
        - 
        δ 
        
          ( 
          
            t 
            - 
            
              
                1 
                2 
               
             
           
          ) 
         
       
     
    {\ displaystyle \ operatorname {rect} '(t) = \ delta \ left (t + {\ frac {1} {2}} \ right) - \ delta \ left (t - {\ frac {1} {2}} \ right)} 
   
  
Other connections 
 
The convolution of  two equal rectangular functions results in the triangle function  , the integration a ramp function  . The Rademacher  functions are a form with a periodic continuation of  the rectangular function .
 
The multiple folding with folds
  
    
      
        m 
       
     
    {\ displaystyle m} 
   
 
  
    
      
        rect 
         
        ( 
        t 
        ) 
        ∗ 
        rect 
         
        ( 
        t 
        ) 
        ∗ 
        rect 
         
        ( 
        t 
        ) 
        ∗ 
        ... 
       
     
    {\ displaystyle \ operatorname {rect} (t) * \ operatorname {rect} (t) * \ operatorname {rect} (t) * \ ldots} 
   
  
with a suitable scaling results in the Gaussian bell curve  .
  
    
      
        m 
        → 
        ∞ 
       
     
    {\ displaystyle m \ to \ infty} 
   
  
See also  
Individual evidence  
^    Hans Dieter Lüke: Signal transmission. Basics of digital and analog communication systems  . 6th, revised and expanded edition. Springer, Berlin et al. 1995, ISBN 3-540-58753-5  , pp.  2  .   
 
 
 
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">