Sodium/glucose cotransporter 2: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Reverted edits by 72.89.192.49 (talk) to last version by DrKiernan
Dexbot (talk | contribs)
m Bot: Deprecating Template:Cite pmid and some minor fixations
Line 68: Line 68:
| colspan=2; style="text-align: center;" | All tests and analysis from<ref name="mgp_reference">{{cite journal | doi = 10.1111/j.1755-3768.2010.4142.x | title = The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice | year = 2010 | author = Gerdin AK | journal = Acta Ophthalmologica | volume = 88 | pages = 925–7 }}</ref><ref>[http://www.sanger.ac.uk/mouseportal/ Mouse Resources Portal], Wellcome Trust Sanger Institute.</ref>
| colspan=2; style="text-align: center;" | All tests and analysis from<ref name="mgp_reference">{{cite journal | doi = 10.1111/j.1755-3768.2010.4142.x | title = The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice | year = 2010 | author = Gerdin AK | journal = Acta Ophthalmologica | volume = 88 | pages = 925–7 }}</ref><ref>[http://www.sanger.ac.uk/mouseportal/ Mouse Resources Portal], Wellcome Trust Sanger Institute.</ref>
|}
|}
[[Model organism]]s have been used in the study of SLC5A2 function. A conditional [[knockout mouse]] line, called ''Slc5a2<sup>tm1a(KOMP)Wtsi</sup>''<ref name="allele_ref">{{cite web |url=http://www.knockoutmouse.org/martsearch/search?query=Slc5a2 |title=International Knockout Mouse Consortium}}</ref><ref name="mgi_allele_ref">{{cite web |url=http://www.informatics.jax.org/searchtool/Search.do?query=MGI:4363573 |title=Mouse Genome Informatics}}</ref> was generated as part of the [[International Knockout Mouse Consortium]] program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.<ref name="pmid21677750">{{Cite pmid|21677750}}</ref><ref name="mouse_library">{{cite journal | doi = 10.1038/474262a | title = Mouse library set to be knockout | year = 2011 | author = Dolgin E | journal = Nature | volume = 474 | issue = 7351 | pages = 262–3 | pmid = 21677718 }}</ref><ref name="mouse_for_all_reasons">{{cite journal | doi = 10.1016/j.cell.2006.12.018 | title = A Mouse for All Reasons | year = 2007 | journal = Cell | volume = 128 | pages = 9–13 | pmid = 17218247 |author=Collins FS, Rossant J, Wurst W| issue = 1 }}</ref>
[[Model organism]]s have been used in the study of SLC5A2 function. A conditional [[knockout mouse]] line, called ''Slc5a2<sup>tm1a(KOMP)Wtsi</sup>''<ref name="allele_ref">{{cite web |url=http://www.knockoutmouse.org/martsearch/search?query=Slc5a2 |title=International Knockout Mouse Consortium}}</ref><ref name="mgi_allele_ref">{{cite web |url=http://www.informatics.jax.org/searchtool/Search.do?query=MGI:4363573 |title=Mouse Genome Informatics}}</ref> was generated as part of the [[International Knockout Mouse Consortium]] program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.<ref name="pmid21677750">{{Cite journal
| last1 = Skarnes |first1 =W. C.
| doi = 10.1038/nature10163
| last2 = Rosen | first2 = B.
| last3 = West | first3 = A. P.
| last4 = Koutsourakis | first4 = M.
| last5 = Bushell | first5 = W.
| last6 = Iyer | first6 = V.
| last7 = Mujica | first7 = A. O.
| last8 = Thomas | first8 = M.
| last9 = Harrow | first9 = J.
| last10 = Cox | first10 = T.
| last11 = Jackson | first11 = D.
| last12 = Severin | first12 = J.
| last13 = Biggs | first13 = P.
| last14 = Fu | first14 = J.
| last15 = Nefedov | first15 = M.
| last16 = De Jong | first16 = P. J.
| last17 = Stewart | first17 = A. F.
| last18 = Bradley | first18 = A.
| title = A conditional knockout resource for the genome-wide study of mouse gene function
| journal = Nature
| volume = 474
| issue = 7351
| pages = 337–342
| year = 2011
| pmid = 21677750
| pmc =3572410
}}</ref><ref name="mouse_library">{{cite journal | doi = 10.1038/474262a | title = Mouse library set to be knockout | year = 2011 | author = Dolgin E | journal = Nature | volume = 474 | issue = 7351 | pages = 262–3 | pmid = 21677718 }}</ref><ref name="mouse_for_all_reasons">{{cite journal | doi = 10.1016/j.cell.2006.12.018 | title = A Mouse for All Reasons | year = 2007 | journal = Cell | volume = 128 | pages = 9–13 | pmid = 17218247 |author=Collins FS, Rossant J, Wurst W| issue = 1 }}</ref>


Male and female animals underwent a standardized [[phenotypic screen]] to determine the effects of deletion.<ref name="mgp_reference" /><ref name="pmid21722353">{{cite journal| author=van der Weyden L, White JK, Adams DJ, Logan DW| title=The mouse genetics toolkit: revealing function and mechanism. | journal=Genome Biol | year= 2011 | volume= 12 | issue= 6 | pages= 224 | pmid=21722353 | doi=10.1186/gb-2011-12-6-224 | pmc=3218837}}</ref> Twenty two tests were carried out on homozygous [[mutant]] mice and one significant abnormality was observed: males displayed increased drinking behaviour.<ref name="mgp_reference" />
Male and female animals underwent a standardized [[phenotypic screen]] to determine the effects of deletion.<ref name="mgp_reference" /><ref name="pmid21722353">{{cite journal| author=van der Weyden L, White JK, Adams DJ, Logan DW| title=The mouse genetics toolkit: revealing function and mechanism. | journal=Genome Biol | year= 2011 | volume= 12 | issue= 6 | pages= 224 | pmid=21722353 | doi=10.1186/gb-2011-12-6-224 | pmc=3218837}}</ref> Twenty two tests were carried out on homozygous [[mutant]] mice and one significant abnormality was observed: males displayed increased drinking behaviour.<ref name="mgp_reference" />

Revision as of 22:29, 27 August 2015

Template:PBB The sodium/glucose cotransporter 2 (SGLT2) is a protein that in humans is encoded by the SLC5A2 (solute carrier family 5 (sodium/glucose cotransporter)) gene.[1]

Function

SGLT2 is a member of the sodium glucose cotransporter family which are sodium-dependent glucose transport proteins. SGLT2 is the major cotransporter involved in glucose reabsorption in the kidney.[2]

SGLT2 inhibitors for diabetes

SGLT2 inhibitors are called gliflozins and lead to a reduction in blood glucose levels. Therefore, SGLT2 inhibitors have potential use in the treatment of type II diabetes. As studied on canagliflozin, a member of this class of drugs, gliflozins enhance glycemic control as well as reduce body weight and systolic and diastolic blood pressure.[3] The gliflozins canagliflozin, dapagliflozin, and empagliflozin may lead to ketoacidosis.[4] Other side effects of gliflozins include increased risk of (generally mild) urinary tract infections, candidal vulvovaginitis and hypoglycemia.[5]

Clinical significance

Mutations in this gene are also associated with renal glucosuria.[6]

Model organisms

Model organisms have been used in the study of SLC5A2 function. A conditional knockout mouse line, called Slc5a2tm1a(KOMP)Wtsi[12][13] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[14][15][16]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[10][17] Twenty two tests were carried out on homozygous mutant mice and one significant abnormality was observed: males displayed increased drinking behaviour.[10]

See also

References

  1. ^ Wells RG, Mohandas TK, Hediger MA (September 1993). "Localization of the Na+/glucose cotransporter gene SGLT2 to human chromosome 16 close to the centromere". Genomics. 17 (3): 787–9. doi:10.1006/geno.1993.1411. PMID 8244402.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. ^ "Entrez Gene: solute carrier family 5 (sodium/glucose cotransporter)".
  3. ^ Haas, B; Eckstein, N; Pfeifer, V; Mayer, P; Hass, M D S (2014). "Efficacy, safety and regulatory status of SGLT2 inhibitors: focus on canagliflozin". Nutrition & Diabetes. 4 (11): e143. doi:10.1038/nutd.2014.40. ISSN 2044-4052.
  4. ^ "FDA Drug Safety Communication: FDA warns that SGLT2 inhibitors for diabetes may result in a serious condition of too much acid in the blood". Food and Drug Administration, USA. 2015-05-15.
  5. ^ "SGLT2 Inhibitors (Gliflozins)". Diabetes.co.uk. Retrieved 2015-05-19.
  6. ^ Calado J, Loeffler J, Sakallioglu O, Gok F, Lhotta K, Barata J, Rueff J (March 2006). "Familial renal glucosuria: SLC5A2 mutation analysis and evidence of salt-wasting". Kidney Int. 69 (5): 852–5. doi:10.1038/sj.ki.5000194. PMID 16518345.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. ^ "Indirect calorimetry data for Slc5a2". Wellcome Trust Sanger Institute.
  8. ^ "Salmonella infection data for Slc5a2". Wellcome Trust Sanger Institute.
  9. ^ "Citrobacter infection data for Slc5a2". Wellcome Trust Sanger Institute.
  10. ^ a b c Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
  11. ^ Mouse Resources Portal, Wellcome Trust Sanger Institute.
  12. ^ "International Knockout Mouse Consortium".
  13. ^ "Mouse Genome Informatics".
  14. ^ Skarnes, W. C.; Rosen, B.; West, A. P.; Koutsourakis, M.; Bushell, W.; Iyer, V.; Mujica, A. O.; Thomas, M.; Harrow, J.; Cox, T.; Jackson, D.; Severin, J.; Biggs, P.; Fu, J.; Nefedov, M.; De Jong, P. J.; Stewart, A. F.; Bradley, A. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–342. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  15. ^ Dolgin E (2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  16. ^ Collins FS, Rossant J, Wurst W (2007). "A Mouse for All Reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  17. ^ van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biol. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)

Further reading