In mathematics, the falling or rising factorial denotes a function similar to exponentiation , but in which the factors fall or rise gradually, i.e. i.e., be reduced or increased by one.
definition
For natural numbers and with the -th decreasing or increasing factorial is noted as or (in some older textbooks also or ) and is defined as follows:
n
{\ displaystyle n}
k
{\ displaystyle k}
n
≥
k
≥
0
{\ displaystyle n \ geq k \ geq 0}
k
{\ displaystyle k}
n
k
_
{\ displaystyle n ^ {\ underline {k}}}
n
k
¯
{\ displaystyle n ^ {\ overline {k}}}
(
n
)
k
{\ displaystyle (n) _ {k}}
n
(
k
)
{\ displaystyle n ^ {(k)}}
n
k
_
: =
n
(
n
-
1
)
(
n
-
2
)
⋯
(
n
-
k
+
1
)
=
n
!
(
n
-
k
)
!
{\ displaystyle n ^ {\ underline {k}}: = n (n-1) (n-2) \ cdots (n-k + 1) = {\ frac {n!} {(nk)!}}}
n
k
¯
: =
n
(
n
+
1
)
(
n
+
2
)
⋯
(
n
+
k
-
1
)
=
(
n
+
k
-
1
)
!
(
n
-
1
)
!
{\ displaystyle n ^ {\ overline {k}}: = n (n + 1) (n + 2) \ cdots (n + k-1) = {\ frac {(n + k-1)!} {( n-1)!}}}
Combinatorial interpretation
In the urn model , the falling factorial can be interpreted as the number of possibilities to remove balls from an urn with different balls , without replacing them, taking into account the sequence. There are candidates for the first ball , for the second ... and finally for the last ball . There are therefore options for the overall selection .
n
{\ displaystyle n}
k
{\ displaystyle k}
n
{\ displaystyle n}
n
-
1
{\ displaystyle n-1}
n
-
k
+
1
{\ displaystyle n-k + 1}
n
(
n
-
1
)
⋯
(
n
-
k
+
1
)
=
n
k
_
{\ displaystyle n (n-1) \ cdots (n-k + 1) = n ^ {\ underline {k}}}
In general, the number of - permutations of a - set or, alternatively, the number of injective mappings of a - set into a - set.
n
k
_
{\ displaystyle n ^ {\ underline {k}}}
k
{\ displaystyle k}
n
{\ displaystyle n}
k
{\ displaystyle k}
n
{\ displaystyle n}
generalization
The definition is analogous for a complex number and a natural number :
x
{\ displaystyle x}
k
{\ displaystyle k}
x
k
_
: =
x
(
x
-
1
)
(
x
-
2
)
⋯
(
x
-
k
+
1
)
{\ displaystyle x ^ {\ underline {k}}: = x (x-1) (x-2) \ cdots (x-k + 1)}
x
k
¯
: =
x
(
x
+
1
)
(
x
+
2
)
⋯
(
x
+
k
-
1
)
{\ displaystyle x ^ {\ overline {k}}: = x (x + 1) (x + 2) \ cdots (x + k-1)}
One can then understand and as complex polynomials in .
x
k
_
{\ displaystyle x ^ {\ underline {k}}}
x
k
¯
{\ displaystyle x ^ {\ overline {k}}}
x
{\ displaystyle x}
For the increasing factorial corresponds to the Pochhammer symbol .
x
∈
N
{\ displaystyle x \ in \ mathbb {N}}
x
k
¯
{\ displaystyle x ^ {\ overline {k}}}
(
x
,
k
)
{\ displaystyle (x, k)}
properties
Calculation rules
The following calculation rules apply:
x
1
_
=
x
1
¯
=
x
{\ displaystyle x ^ {\ underline {1}} = x ^ {\ overline {1}} = x}
x
0
_
=
x
0
¯
=
1
{\ displaystyle x ^ {\ underline {0}} = x ^ {\ overline {0}} = 1}
(
-
x
)
k
¯
=
(
-
1
)
k
x
k
_
{\ displaystyle (-x) ^ {\ overline {k}} = (- 1) ^ {k} x ^ {\ underline {k}}}
x
k
_
=
(
-
x
)
k
¯
=
0
{\ displaystyle x ^ {\ underline {k}} = (- x) ^ {\ overline {k}} = 0}
For
0
≤
x
<
k
{\ displaystyle 0 \ leq x <k}
Relationships with other known numbers
With the help of the falling factorials, the binomial coefficients can be defined in general:
(
x
k
)
: =
1
k
!
x
k
_
{\ displaystyle {\ binom {x} {k}}: = {\ frac {1} {k!}} x ^ {\ underline {k}}}
The following equations also apply, where and denote the (unsigned) Stirling numbers of the first and second kind:
[
n
k
]
{\ displaystyle \ displaystyle \ left [{n \ atop k} \ right]}
{
n
k
}
{\ displaystyle \ displaystyle \ left \ {\! {n \ atop k} \! \ right \}}
x
k
=
∑
j
=
-
∞
∞
{
k
j
}
⋅
x
j
_
{\ displaystyle \ displaystyle x ^ {k} = \ sum _ {j = - \ infty} ^ {\ infty} \ left \ {\! {k \ atop j} \! \ right \} \ cdot x ^ {\ underline {j}}}
x
k
=
∑
j
=
-
∞
∞
(
-
1
)
k
-
j
{
k
j
}
⋅
x
j
¯
{\ displaystyle \ displaystyle x ^ {k} = \ sum _ {j = - \ infty} ^ {\ infty} (- 1) ^ {kj} \ left \ {{k \ atop j} \ right \} \ cdot x ^ {\ overline {j}}}
x
k
¯
=
∑
j
=
-
∞
∞
[
k
j
]
⋅
x
j
{\ displaystyle \ displaystyle x ^ {\ overline {k}} = \ sum _ {j = - \ infty} ^ {\ infty} \ left [{k \ atop j} \ right] \ cdot x ^ {j}}
x
k
_
=
∑
j
=
-
∞
∞
(
-
1
)
k
-
j
[
k
j
]
⋅
x
j
{\ displaystyle \ displaystyle x ^ {\ underline {k}} = \ sum _ {j = - \ infty} ^ {\ infty} (- 1) ^ {kj} \ left [{k \ atop j} \ right] \ cdot x ^ {j}}
Occurrence in analysis
d
j
d
x
j
x
k
=
k
j
_
x
k
-
j
{\ displaystyle {{\ operatorname {d} ^ {j}} \ over \ operatorname {d} \! x ^ {j}} x ^ {k} = k ^ {\ underline {j}} x ^ {kj} }
literature
Martin Aigner : Discrete Mathematics . Vieweg + Teubner, Wiesbaden 2009, ISBN 978-3-8348-0084-8 .
Volker Diekert, Manfred Kufleitner, Gerhard Rosenberger: Elements of discrete mathematics. Numbers and counting, graphs and associations . De Gruyter, Berlin 2013, ISBN 978-3-11-027767-8 .
Ronald L. Graham , Donald E. Knuth , Oren Patashnik : Concrete mathematics. A foundation for computer science. Second edition . Addison-Wesley, 1994, ISBN 978-0-201-55802-9 .
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">