Longchamps point
The Longchamps point (point of De Longchamps), named after the French mathematician Gohierre de Longchamps (1842–1906), is one of the excellent points of a triangle . It is defined as the mirror point (L) of the vertical intersection (H) at the circumcenter (U).
properties
- The Longchamps point is on Euler's straight line .
- The Longchamps point lies on a straight line with the Gergonne point and the center of the circle .
Coordinates
Longchamps point ( ) | |
---|---|
Trilinear coordinates | |
Barycentric coordinates |
|
literature
- A. Vandeghen: Soddy's Circles and the De Longchamps Point of a Triangle . The American Mathematical Monthly, Vol. 71, No. 2 (Feb., 1964), pp. 176-179 ( JSTOR 2311750 )
Web links
- Eric W. Weisstein : de Longchamps Point . In: MathWorld (English).
supporting documents
- ↑ Eric W. Weisstein : Kimberling Center . In: MathWorld (English).