UCP2: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Addbot (talk | contribs)
m Bot: Migrating 2 interwiki links, now provided by Wikidata on d:q604862
Monkbot (talk | contribs)
Line 1: Line 1:
{{PBB|geneid=7351}}
{{PBB|geneid=7351}}
'''Mitochondrial uncoupling protein 2''' is a [[protein]] that in humans is encoded by the ''UCP2'' [[gene]].<ref name="pmid9196039">{{cite journal | author = Vidal-Puig A, Solanes G, Grujic D, Flier JS, Lowell BB | title = UCP3: an uncoupling protein homologue expressed preferentially and abundantly in skeletal muscle and brown adipose tissue | journal = Biochem Biophys Res Commun | volume = 235 | issue = 1 | pages = 79–82 | year = 1997 | month = Jul | pmid = 9196039 | pmc = | doi = 10.1006/bbrc.1997.6740 }}</ref>
'''Mitochondrial uncoupling protein 2''' is a [[protein]] that in humans is encoded by the ''UCP2'' [[gene]].<ref name="pmid9196039">{{cite journal | author = Vidal-Puig A, Solanes G, Grujic D, Flier JS, Lowell BB | title = UCP3: an uncoupling protein homologue expressed preferentially and abundantly in skeletal muscle and brown adipose tissue | journal = Biochem Biophys Res Commun | volume = 235 | issue = 1 | pages = 79–82 |date=Jul 1997 | pmid = 9196039 | pmc = | doi = 10.1006/bbrc.1997.6740 }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
{{PBB_Summary
| section_title =
| section_title =
| summary_text = Mitochondrial uncoupling proteins (UCP) are members of the larger family of mitochondrial anion carrier proteins (MACP). UCPs separate oxidative phosphorylation from ATP synthesis with energy dissipated as heat, also referred to as the mitochondrial proton leak. UCPs facilitate the transfer of anions from the inner to the outer mitochondrial membrane and the return transfer of protons from the outer to the inner mitochondrial membrane. They also reduce the mitochondrial membrane potential in mammalian cells. Tissue specificity occurs for the different UCPs and the exact methods of how UCPs transfer H+/OH- are not known. UCPs contain the three homologous protein domains of MACPs. This gene is expressed in many tissues, with the greatest expression in skeletal muscle. Although it was originally thought to play a role in nonshivering thermogenesis, obesity, diabetes and atherosclerosis, it now appears that the main function of UCP2 is the control of mitochondria-derived reactive oxygen species.<ref name="pmid11101840">{{cite journal |author=Arsenijevic D, Onuma H, Pecqueur C, ''et al.'' |title=Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production |journal=Nat. Genet. |volume=26 |issue=4 |pages=435–9 |year=2000 |month=December |pmid=11101840 |doi=10.1038/82565 |url=}}</ref> Chromosomal order is 5'-UCP3-UCP2-3'.<ref>{{cite web | title = Entrez Gene: UCP2 uncoupling protein 2 (mitochondrial, proton carrier)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=7351| accessdate = }}</ref>
| summary_text = Mitochondrial uncoupling proteins (UCP) are members of the larger family of mitochondrial anion carrier proteins (MACP). UCPs separate oxidative phosphorylation from ATP synthesis with energy dissipated as heat, also referred to as the mitochondrial proton leak. UCPs facilitate the transfer of anions from the inner to the outer mitochondrial membrane and the return transfer of protons from the outer to the inner mitochondrial membrane. They also reduce the mitochondrial membrane potential in mammalian cells. Tissue specificity occurs for the different UCPs and the exact methods of how UCPs transfer H+/OH- are not known. UCPs contain the three homologous protein domains of MACPs. This gene is expressed in many tissues, with the greatest expression in skeletal muscle. Although it was originally thought to play a role in nonshivering thermogenesis, obesity, diabetes and atherosclerosis, it now appears that the main function of UCP2 is the control of mitochondria-derived reactive oxygen species.<ref name="pmid11101840">{{cite journal |author=Arsenijevic D, Onuma H, Pecqueur C, ''et al.'' |title=Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production |journal=Nat. Genet. |volume=26 |issue=4 |pages=435–9 |date=December 2000 |pmid=11101840 |doi=10.1038/82565 |url=}}</ref> Chromosomal order is 5'-UCP3-UCP2-3'.<ref>{{cite web | title = Entrez Gene: UCP2 uncoupling protein 2 (mitochondrial, proton carrier)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=7351| accessdate = }}</ref>
}}
}}



Revision as of 04:29, 31 January 2014

Template:PBB Mitochondrial uncoupling protein 2 is a protein that in humans is encoded by the UCP2 gene.[1]

Template:PBB Summary

Mitochondrial Uncoupling Protein 2

See also

References

  1. ^ Vidal-Puig A, Solanes G, Grujic D, Flier JS, Lowell BB (Jul 1997). "UCP3: an uncoupling protein homologue expressed preferentially and abundantly in skeletal muscle and brown adipose tissue". Biochem Biophys Res Commun. 235 (1): 79–82. doi:10.1006/bbrc.1997.6740. PMID 9196039.{{cite journal}}: CS1 maint: multiple names: authors list (link)

Further reading

Template:PBB Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.


Template:PBB Controls