Bacillus licheniformis: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Citation bot (talk | contribs)
Alter: journal, pages, url. URLs might have been internationalized/anonymized. Add: s2cid, issue, author pars. 1-1. Removed parameters. Formatted dashes. Some additions/deletions were actually parameter name changes. | You can use this bot yourself. Report bugs here. | Suggested by AManWithNoPlan | All pages linked from cached copy of User:AManWithNoPlan/sandbox2 | via #UCB_webform_linked 827/1577
Monkbot (talk | contribs)
m Task 18 (cosmetic): eval 12 templates: del empty params (7×); hyphenate params (2×);
Line 4: Line 4:
| genus = Bacillus
| genus = Bacillus
| species = licheniformis
| species = licheniformis
| authority = (Weigmann 1898) Chester 1901<ref>{{cite web|url=https://lpsn.dsmz.de/species/bacillus-licheniformis|title=Species: Bacillus licheniformis|work=[[List of Prokaryotic names with Standing in Nomenclature]]|accessdate=3 October 2020}}</ref>
| authority = (Weigmann 1898) Chester 1901<ref>{{cite web|url=https://lpsn.dsmz.de/species/bacillus-licheniformis|title=Species: Bacillus licheniformis|work=[[List of Prokaryotic names with Standing in Nomenclature]]|access-date=3 October 2020}}</ref>
}}
}}
{{more citations needed|date=January 2012}}
{{more citations needed|date=January 2012}}
Line 12: Line 12:
It is a [[gram-positive]], [[Mesophile|mesophilic]] bacterium. Its optimal growth temperature is around 50&nbsp;°C, though it can survive at much higher temperatures. The optimal temperature for enzyme secretion is 37&nbsp;°C. It can exist in a dormant [[endospore|spore]] form to resist harsh environments, or in a vegetative state when conditions are good.
It is a [[gram-positive]], [[Mesophile|mesophilic]] bacterium. Its optimal growth temperature is around 50&nbsp;°C, though it can survive at much higher temperatures. The optimal temperature for enzyme secretion is 37&nbsp;°C. It can exist in a dormant [[endospore|spore]] form to resist harsh environments, or in a vegetative state when conditions are good.


High capacity of secretion of the alkaline [[serine protease]] has made ''B.'' ''licheniformis'' one of the most important bacteria in [[industrial enzyme]] production.<ref>{{Cite journal|last1=Schallmey|first1=Marcus|last2=Singh|first2=Ajay|last3=Ward|first3=Owen P.|date=2004-01-01|title=Developments in the use of Bacillus species for industrial production|journal=Canadian Journal of Microbiology|volume=50|issue=1|pages=1–17|doi=10.1139/w03-076|issn=0008-4166|pmid=15052317}}</ref> [https://www.uniprot.org/uniprot/P00780 Subtilisin Carlsberg] secreted by ''B.'' ''licheniformis'' is used as a detergent protease. It is sold under the name Alcalase by [[Novozymes]].<ref>{{Cite web|url=https://www.uniprot.org/uniprot/P00780|title=UniProtKB|last=|first=|date=|website=|publisher=|access-date=}}</ref> A small [[antisense RNA]] against Subtilisin Carlsberg named BLi_r0872 was discovered in an [[RNA-Seq|RNA-seq]] based study. It may have a putative impact on protease production and serve as target for strain improvement.<ref>{{Cite journal|last1=Wiegand|first1=Sandra|last2=Dietrich|first2=Sascha|last3=Hertel|first3=Robert|last4=Bongaerts|first4=Johannes|last5=Evers|first5=Stefan|last6=Volland|first6=Sonja|last7=Daniel|first7=Rolf|last8=Liesegang|first8=Heiko|date=2013-01-01|title=RNA-Seq of Bacillus licheniformis: active regulatory RNA features expressed within a productive fermentation|journal=BMC Genomics|volume=14|pages=667|doi=10.1186/1471-2164-14-667|issn=1471-2164|pmc=3871023|pmid=24079885}}</ref>
High capacity of secretion of the alkaline [[serine protease]] has made ''B.'' ''licheniformis'' one of the most important bacteria in [[industrial enzyme]] production.<ref>{{Cite journal|last1=Schallmey|first1=Marcus|last2=Singh|first2=Ajay|last3=Ward|first3=Owen P.|date=2004-01-01|title=Developments in the use of Bacillus species for industrial production|journal=Canadian Journal of Microbiology|volume=50|issue=1|pages=1–17|doi=10.1139/w03-076|issn=0008-4166|pmid=15052317}}</ref> [https://www.uniprot.org/uniprot/P00780 Subtilisin Carlsberg] secreted by ''B.'' ''licheniformis'' is used as a detergent protease. It is sold under the name Alcalase by [[Novozymes]].<ref>{{Cite web|url=https://www.uniprot.org/uniprot/P00780|title=UniProtKB}}</ref> A small [[antisense RNA]] against Subtilisin Carlsberg named BLi_r0872 was discovered in an [[RNA-Seq|RNA-seq]] based study. It may have a putative impact on protease production and serve as target for strain improvement.<ref>{{Cite journal|last1=Wiegand|first1=Sandra|last2=Dietrich|first2=Sascha|last3=Hertel|first3=Robert|last4=Bongaerts|first4=Johannes|last5=Evers|first5=Stefan|last6=Volland|first6=Sonja|last7=Daniel|first7=Rolf|last8=Liesegang|first8=Heiko|date=2013-01-01|title=RNA-Seq of Bacillus licheniformis: active regulatory RNA features expressed within a productive fermentation|journal=BMC Genomics|volume=14|pages=667|doi=10.1186/1471-2164-14-667|issn=1471-2164|pmc=3871023|pmid=24079885}}</ref>


Scientists are currently exploring its ability to degrade feathers for agricultural purposes. Feathers contain high amounts of non-digestible [[protein]]s, but researchers hope that, through fermentation with ''B. licheniformis'', they can use waste feathers to produce cheap and nutritious feather meal to feed livestock.
Scientists are currently exploring its ability to degrade feathers for agricultural purposes. Feathers contain high amounts of non-digestible [[protein]]s, but researchers hope that, through fermentation with ''B. licheniformis'', they can use waste feathers to produce cheap and nutritious feather meal to feed livestock.
Line 34: Line 34:
==Natural genetic transformation==
==Natural genetic transformation==


''B. licheniformis'' is naturally competent for [[Transformation (genetics)|genetic transformation]].<ref name="pmid25009236">{{cite journal |vauthors=Jakobs M, Hoffmann K, Grabke A, Neuber S, Liesegang H, Volland S, Meinhardt F |title=Unravelling the genetic basis for competence development of auxotrophic Bacillus licheniformis 9945A strains |journal=Microbiology |volume=160 |issue=Pt 10 |pages=2136–47 |year=2014 |pmid=25009236 |doi=10.1099/mic.0.079236-0 |url=}}</ref> Natural genetic transformation is a sexual process involving DNA transfer from one bacterium to another through the intervening medium, and the integration of the donor sequence into the recipient genome by [[homologous recombination]].
''B. licheniformis'' is naturally competent for [[Transformation (genetics)|genetic transformation]].<ref name="pmid25009236">{{cite journal |vauthors=Jakobs M, Hoffmann K, Grabke A, Neuber S, Liesegang H, Volland S, Meinhardt F |title=Unravelling the genetic basis for competence development of auxotrophic Bacillus licheniformis 9945A strains |journal=Microbiology |volume=160 |issue=Pt 10 |pages=2136–47 |year=2014 |pmid=25009236 |doi=10.1099/mic.0.079236-0 }}</ref> Natural genetic transformation is a sexual process involving DNA transfer from one bacterium to another through the intervening medium, and the integration of the donor sequence into the recipient genome by [[homologous recombination]].


== As a probiotic ==
== As a probiotic ==
In China, live ''B. licheniformis'' powder in capsules is sold as an [[over-the-counter]] treatment of gut problems.<ref>{{cite web |title=地衣芽孢杆菌活菌胶囊 [Bacillus Licheniformis Capsule, Live] |url=http://drugs.dxy.cn/drug/149537.htm |website=drugs.dxy.cn |accessdate=9 January 2020}}</ref>
In China, live ''B. licheniformis'' powder in capsules is sold as an [[over-the-counter]] treatment of gut problems.<ref>{{cite web |title=地衣芽孢杆菌活菌胶囊 [Bacillus Licheniformis Capsule, Live] |url=http://drugs.dxy.cn/drug/149537.htm |website=drugs.dxy.cn |access-date=9 January 2020}}</ref>


It has also been studied as a probiotic in chicken and pigs.<ref>{{cite journal |last1=Kaewtapee |first1=Chanwit |last2=Burbach |first2=Katharina |last3=Tomforde |first3=Georgina |last4=Hartinger |first4=Thomas |last5=Camarinha-Silva |first5=Amélia |last6=Heinritz |first6=Sonja |last7=Seifert |first7=Jana |last8=Wiltafsky |first8=Markus |last9=Mosenthin |first9=Rainer |last10=Rosenfelder-Kuon |first10=Pia |title=Effect of Bacillus subtilis and Bacillus licheniformis supplementation in diets with low- and high-protein content on ileal crude protein and amino acid digestibility and intestinal microbiota composition of growing pigs |journal=Journal of Animal Science and Biotechnology |date=1 May 2017 |volume=8 |issue=1 |doi=10.1186/s40104-017-0168-2|doi-access=free }}</ref><ref>{{cite journal |last1=Wang |first1=Y |last2=Du |first2=W |last3=Lei |first3=K |last4=Wang |first4=B |last5=Wang |first5=Y |last6=Zhou |first6=Y |last7=Li |first7=W |title=Effects of Dietary Bacillus licheniformis on Gut Physical Barrier, Immunity, and Reproductive Hormones of Laying Hens. |journal=Probiotics and Antimicrobial Proteins |date=September 2017 |volume=9 |issue=3 |pages=292–299 |doi=10.1007/s12602-017-9252-3 |pmid=28083809|s2cid=26011314 }}</ref>
It has also been studied as a probiotic in chicken and pigs.<ref>{{cite journal |last1=Kaewtapee |first1=Chanwit |last2=Burbach |first2=Katharina |last3=Tomforde |first3=Georgina |last4=Hartinger |first4=Thomas |last5=Camarinha-Silva |first5=Amélia |last6=Heinritz |first6=Sonja |last7=Seifert |first7=Jana |last8=Wiltafsky |first8=Markus |last9=Mosenthin |first9=Rainer |last10=Rosenfelder-Kuon |first10=Pia |title=Effect of Bacillus subtilis and Bacillus licheniformis supplementation in diets with low- and high-protein content on ileal crude protein and amino acid digestibility and intestinal microbiota composition of growing pigs |journal=Journal of Animal Science and Biotechnology |date=1 May 2017 |volume=8 |issue=1 |doi=10.1186/s40104-017-0168-2|doi-access=free }}</ref><ref>{{cite journal |last1=Wang |first1=Y |last2=Du |first2=W |last3=Lei |first3=K |last4=Wang |first4=B |last5=Wang |first5=Y |last6=Zhou |first6=Y |last7=Li |first7=W |title=Effects of Dietary Bacillus licheniformis on Gut Physical Barrier, Immunity, and Reproductive Hormones of Laying Hens. |journal=Probiotics and Antimicrobial Proteins |date=September 2017 |volume=9 |issue=3 |pages=292–299 |doi=10.1007/s12602-017-9252-3 |pmid=28083809|s2cid=26011314 }}</ref>

Revision as of 12:37, 11 December 2020

Bacillus licheniformis
Bacillus licheniformis colonies on a blood agar plate.
Scientific classification Edit this classification
Domain: Bacteria
Phylum: Bacillota
Class: Bacilli
Order: Bacillales
Family: Bacillaceae
Genus: Bacillus
Species:
B. licheniformis
Binomial name
Bacillus licheniformis
(Weigmann 1898) Chester 1901[1]

Bacillus licheniformis is a bacterium commonly found in the soil. It is found on bird feathers, especially chest and back plumage, and most often in ground-dwelling birds (like sparrows) and aquatic species (like ducks).

It is a gram-positive, mesophilic bacterium. Its optimal growth temperature is around 50 °C, though it can survive at much higher temperatures. The optimal temperature for enzyme secretion is 37 °C. It can exist in a dormant spore form to resist harsh environments, or in a vegetative state when conditions are good.

High capacity of secretion of the alkaline serine protease has made B. licheniformis one of the most important bacteria in industrial enzyme production.[2] Subtilisin Carlsberg secreted by B. licheniformis is used as a detergent protease. It is sold under the name Alcalase by Novozymes.[3] A small antisense RNA against Subtilisin Carlsberg named BLi_r0872 was discovered in an RNA-seq based study. It may have a putative impact on protease production and serve as target for strain improvement.[4]

Scientists are currently exploring its ability to degrade feathers for agricultural purposes. Feathers contain high amounts of non-digestible proteins, but researchers hope that, through fermentation with B. licheniformis, they can use waste feathers to produce cheap and nutritious feather meal to feed livestock.

Ecological research is also being done looking at the interaction between plumage colors and B. licheniformis activity, and the consequences thereof. Feather degrading bacteria may have played an important role in the evolution of molting, and patterns in feather coloration (Gloger's Rule).

As a degrader

Feather degradation

Bacillus licheniformis degrades feathers of parrots and other birds, especially white feathers. Red feathers with high levels of psittacofulvin are more resistant.[5]

Biological laundry detergent

Bacillus licheniformis is cultured in order to obtain protease for use in biological laundry detergent. The bacterium is well adapted to grow in alkaline conditions, so the protease it produces can withstand high pH levels, making it ideal for this use - the other components of detergents create an alkaline pH. The protease has a pH optimum of between 9 and 10 and is added to laundry detergents in order to digest, and hence remove, dirt made of proteins. This allows for much lower temperatures to be used, resulting in lower energy use and a reduced risk of shrinkage of garments or loss of colored dyes.

Dental applications

In 2012, scientists from Newcastle University studying Bacillus licheniformis as a possible agent to clean ships' hulls isolated an enzyme that has proven to be an unexpected tooth decay fighter as it has the ability to cut through plaque or a layer of bacteria.[6]

Nanotech applications

Bacillus licheniformis can be used in synthesis of gold nanocubes.[7] Researchers have synthesized gold nanoparticles with sizes between 10 and 100 nanometres. Gold nanoparticles are usually synthesized at high temperatures, in organic solvents and using toxic reagents. The bacteria produce them in much milder conditions.

Natural genetic transformation

B. licheniformis is naturally competent for genetic transformation.[8] Natural genetic transformation is a sexual process involving DNA transfer from one bacterium to another through the intervening medium, and the integration of the donor sequence into the recipient genome by homologous recombination.

As a probiotic

In China, live B. licheniformis powder in capsules is sold as an over-the-counter treatment of gut problems.[9]

It has also been studied as a probiotic in chicken and pigs.[10][11]

Identification through testing

Below is a list of differential techniques and results that can help to identify Bacillus licheniformis from other bacteria and Bacillus species.[12]

References

  1. ^ "Species: Bacillus licheniformis". List of Prokaryotic names with Standing in Nomenclature. Retrieved 3 October 2020.
  2. ^ Schallmey, Marcus; Singh, Ajay; Ward, Owen P. (2004-01-01). "Developments in the use of Bacillus species for industrial production". Canadian Journal of Microbiology. 50 (1): 1–17. doi:10.1139/w03-076. ISSN 0008-4166. PMID 15052317.
  3. ^ "UniProtKB".
  4. ^ Wiegand, Sandra; Dietrich, Sascha; Hertel, Robert; Bongaerts, Johannes; Evers, Stefan; Volland, Sonja; Daniel, Rolf; Liesegang, Heiko (2013-01-01). "RNA-Seq of Bacillus licheniformis: active regulatory RNA features expressed within a productive fermentation". BMC Genomics. 14: 667. doi:10.1186/1471-2164-14-667. ISSN 1471-2164. PMC 3871023. PMID 24079885.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  5. ^ Burtt, E. H. (2010). "Colourful parrot feathers resist bacterial degradation". Biology Letters. 7 (2): 214–216. doi:10.1098/rsbl.2010.0716. PMC 3061162. PMID 20926430.
  6. ^ Wilkinson, Tom (4 July 2012). "Seaweed could fight tooth decay – scientists". Independent.ie.
  7. ^ Kalishwaralal, Kalimuthu; Deepak, Venkataraman; Ram Kumar Pandian, Sureshbabu; Gurunathan, Sangiliyandi (1 November 2009). "Biological synthesis of gold nanocubes from Bacillus licheniformis". Bioresource Technology. 100 (21): 5356–5358. doi:10.1016/j.biortech.2009.05.051. PMID 19574037.
  8. ^ Jakobs M, Hoffmann K, Grabke A, Neuber S, Liesegang H, Volland S, Meinhardt F (2014). "Unravelling the genetic basis for competence development of auxotrophic Bacillus licheniformis 9945A strains". Microbiology. 160 (Pt 10): 2136–47. doi:10.1099/mic.0.079236-0. PMID 25009236.
  9. ^ "地衣芽孢杆菌活菌胶囊 [Bacillus Licheniformis Capsule, Live]". drugs.dxy.cn. Retrieved 9 January 2020.
  10. ^ Kaewtapee, Chanwit; Burbach, Katharina; Tomforde, Georgina; Hartinger, Thomas; Camarinha-Silva, Amélia; Heinritz, Sonja; Seifert, Jana; Wiltafsky, Markus; Mosenthin, Rainer; Rosenfelder-Kuon, Pia (1 May 2017). "Effect of Bacillus subtilis and Bacillus licheniformis supplementation in diets with low- and high-protein content on ileal crude protein and amino acid digestibility and intestinal microbiota composition of growing pigs". Journal of Animal Science and Biotechnology. 8 (1). doi:10.1186/s40104-017-0168-2.
  11. ^ Wang, Y; Du, W; Lei, K; Wang, B; Wang, Y; Zhou, Y; Li, W (September 2017). "Effects of Dietary Bacillus licheniformis on Gut Physical Barrier, Immunity, and Reproductive Hormones of Laying Hens". Probiotics and Antimicrobial Proteins. 9 (3): 292–299. doi:10.1007/s12602-017-9252-3. PMID 28083809. S2CID 26011314.
  12. ^ Harwood, Colin R. (2013-11-11). Bacillus. Springer Science & Business Media. ISBN 9781489935021.

External links