The homomorphism theorem is a mathematical theorem from the field of algebra , which applies in a corresponding form to mappings between groups , vector spaces and rings . It creates a close connection between group homomorphisms and normal divisors , vector space homomorphisms and sub-vector spaces as well as ring homomorphisms and ideals . The homomorphism theorem reads:
Is a homomorphism and the core by , then the quotient is isomorphic to the image .
f
:
A.
→
B.
{\ displaystyle f \ colon A \ to B}
ker
(
f
)
{\ displaystyle \ ker (f)}
f
{\ displaystyle f}
A.
/
ker
(
f
)
{\ displaystyle A / \ ker (f)}
f
(
A.
)
{\ displaystyle f (A)}
group
statement
If a group is homomorphic , then the kernel is a normal divisor of and the factor group is isomorphic to the image . A corresponding isomorphism is given by .
f
:
(
G
,
∘
)
→
(
H
,
⋆
)
{\ displaystyle f \ colon \ left (G, \ circ \ right) \ to \ left (H, \ star \ right)}
N
:
=
ker
(
f
)
{\ displaystyle N \ colon = \ ker \ left (f \ right)}
G
{\ displaystyle G}
G
/
N
{\ displaystyle G / N}
f
(
G
)
{\ displaystyle f \ left (G \ right)}
f
~
:
G
/
N
→
f
(
G
)
;
G
N
↦
f
(
G
)
{\ displaystyle {\ tilde {f}} \ colon G / N \ rightarrow f (G); gN \ mapsto f \ left (g \ right)}
proof
It suffices to show that the map is a group isomorphism .
f
~
{\ displaystyle {\ tilde {f}}}
f
~
{\ displaystyle {\ tilde {f}}}
is well defined and injective , there
a
N
=
b
N
⇔
b
-
1
a
∈
N
⇔
f
(
b
-
1
a
)
=
e
⇔
f
~
(
a
N
)
=
f
(
a
)
=
f
(
b
)
=
f
~
(
b
N
)
{\ displaystyle aN = bN \ Leftrightarrow b ^ {- 1} a \ in N \ Leftrightarrow f (b ^ {- 1} a) = e \ Leftrightarrow {\ tilde {f}} (aN) = f (a) = f (b) = {\ tilde {f}} (bN)}
f
~
{\ displaystyle {\ tilde {f}}}
is a group homomorphism , since for all secondary classes and the following applies:
a
N
{\ displaystyle aN}
b
N
{\ displaystyle bN}
f
~
(
a
N
∘
b
N
)
=
f
~
(
a
b
N
)
=
f
(
a
b
)
=
f
(
a
)
⋆
f
(
b
)
=
f
~
(
a
N
)
⋆
f
~
(
b
N
)
{\ displaystyle {\ tilde {f}} \ left (aN \ circ bN \ right) = {\ tilde {f}} \ left (abN \ right) = f (ab) = f (a) \ star f (b ) = {\ tilde {f}} (aN) \ star {\ tilde {f}} (bN)}
f
~
{\ displaystyle {\ tilde {f}}}
surjective because for each applies: .
G
:
=
f
(
G
′
)
∈
f
(
G
)
{\ displaystyle g \ colon = f \ left (g '\ right) \ in f \ left (G \ right)}
f
~
(
G
′
N
)
=
f
(
G
′
)
=
G
{\ displaystyle {\ tilde {f}} \ left (g'N \ right) = f \ left (g '\ right) = g}
It follows from this that is a group isomorphism , and thus .
f
~
:
G
/
N
→
f
(
G
)
{\ displaystyle {\ tilde {f}} \ colon G / N \ rightarrow f (G)}
G
/
N
≅
f
(
G
)
{\ displaystyle G / N \ cong f \ left (G \ right)}
Examples
det
:
GL
(
n
,
K
)
→
K
∗
=
K
∖
{
0
}
{\ displaystyle \ det \ colon \ operatorname {GL} (n, K) \ to K ^ {*} = K \ setminus \ {0 \}}
is a group homomorphism whose core consists of the special linear group of matrices with determinants . According to the homomorphism theorem applies
SL
(
n
,
K
)
{\ displaystyle \ operatorname {SL} (n, K)}
n
×
n
{\ displaystyle n \ times n}
1
{\ displaystyle 1}
GL
(
n
,
K
)
/
SL
(
n
,
K
)
≅
K
∗
{\ displaystyle \ operatorname {GL} (n, K) / \ operatorname {SL} (n, K) \ cong K ^ {*}}
.
From this it follows in particular that, in contrast to the linear group, the factor group is Abelian.
GL
(
n
,
K
)
{\ displaystyle \ operatorname {GL} (n, K)}
GL
(
n
,
K
)
/
SL
(
n
,
K
)
{\ displaystyle \ operatorname {GL} (n, K) / \ operatorname {SL} (n, K)}
O
(
n
,
K
)
/
SO
(
n
,
K
)
≅
{
-
1
,
1
}
{\ displaystyle \ operatorname {O} (n, K) / \ operatorname {SO} (n, K) \ cong \ left \ {- 1,1 \ right \}}
where stands for the orthogonal group and for the special orthogonal group.
O
(
n
,
K
)
{\ displaystyle \ operatorname {O} (n, K)}
SO
(
n
,
K
)
{\ displaystyle \ operatorname {SO} (n, K)}
It stands for the symmetrical group . The Signum mapping defines a group homomorphism with ( alternating group ), which is for surjective. According to the homomorphism theorem, we have :
S.
n
{\ displaystyle S_ {n}}
sign
:
S.
n
→
{
-
1
,
1
}
{\ displaystyle \ operatorname {sign} \ colon S_ {n} \ to \ left \ {- 1,1 \ right \}}
ker
(
sign
)
=
Old
n
{\ displaystyle \ operatorname {ker} \ left (\ operatorname {sign} \ right) = \ operatorname {Alt} _ {n}}
n
≥
2
{\ displaystyle n \ geq 2}
n
≥
2
{\ displaystyle n \ geq 2}
S.
n
/
Old
n
≅
{
-
1
,
1
}
{\ displaystyle S_ {n} / \ operatorname {Alt} _ {n} \ cong \ left \ {- 1,1 \ right \}}
ring
If a ring homomorphism , then the kernel is an ideal of and the factor ring is isomorphic to the image .
f
:
R.
→
S.
{\ displaystyle f \ colon R \ to S}
ker
(
f
)
{\ displaystyle \ ker (f)}
R.
{\ displaystyle R}
R.
/
ker
(
f
)
{\ displaystyle R / {\ ker (f)}}
in the
(
f
)
{\ displaystyle \ operatorname {im} (f)}
The proof is analogous to the proof for groups , it only needs to be shown:
f
~
(
a
N
⋅
b
N
)
=
f
~
(
(
a
⋅
b
)
N
)
=
f
(
a
⋅
b
)
=
f
(
a
)
⋅
f
(
b
)
=
f
~
(
a
N
)
⋅
f
~
(
b
N
)
{\ displaystyle {\ tilde {f}} \ left (aN \ cdot bN \ right) = {\ tilde {f}} \ left (\ left (a \ cdot b \ right) N \ right) = f \ left ( a \ cdot b \ right) = f \ left (a \ right) \ cdot f \ left (b \ right) = {\ tilde {f}} \ left (aN \ right) \ cdot {\ tilde {f}} \ left (bN \ right)}
Vector space
statement
Is a vector space homomorphism, i. H. a linear mapping from to , then the kernel is a subspace of and the factor space is isomorphic to the image .
f
{\ displaystyle f}
V
{\ displaystyle V}
W.
{\ displaystyle W}
ker
(
f
)
{\ displaystyle \ ker (f)}
V
{\ displaystyle V}
V
/
ker
(
f
)
{\ displaystyle V / {\ ker (f)}}
in the
(
f
)
{\ displaystyle \ operatorname {im} (f)}
example
The differential operator
d
d
x
:
C.
1
(
R.
)
→
C.
0
(
R.
)
,
f
(
x
)
↦
d
d
x
f
(
x
)
=
f
′
(
x
)
{\ displaystyle {\ frac {\ mathrm {d}} {\ mathrm {d} x}} \ colon \ C ^ {1} (\ mathbb {R}) \ rightarrow C ^ {0} (\ mathbb {R} ), \ quad f (x) \ mapsto {\ frac {\ mathrm {d}} {\ mathrm {d} x}} f (x) = f '(x)}
is a homomorphism from the vector space of the continuously differentiable functions
into the vector space of the continuous functions . Its core is the set of constant functions that is noted here as . According to the homomorphism theorem applies
R.
{\ displaystyle \ mathbb {R}}
C.
1
(
R.
)
{\ displaystyle C ^ {1} (\ mathbb {R})}
R.
{\ displaystyle \ mathbb {R}}
C.
0
(
R.
)
{\ displaystyle C ^ {0} (\ mathbb {R})}
R.
{\ displaystyle \ mathbb {R}}
C.
1
(
R.
)
/
R.
≅
C.
0
(
R.
)
{\ displaystyle C ^ {1} (\ mathbb {R}) / \ mathbb {R} \ cong C ^ {0} (\ mathbb {R})}
The isomorphism is the induced homomorphism
d
d
x
~
:
C.
1
(
R.
)
/
R.
→
C.
0
(
R.
)
,
f
(
x
)
+
R.
↦
f
′
(
x
)
{\ displaystyle {\ frac {\ mathrm {d}} {\ mathrm {d} x}} ^ {\ displaystyle {\ tilde {}}}: C ^ {1} (\ mathbb {R}) / \ mathbb { R} \ rightarrow C ^ {0} (\ mathbb {R}), \ quad f (x) + \ mathbb {R} \ mapsto f '(x)}
.
Its inverse homomorphism is indefinite integration
∫
⋅
d
x
:
C.
0
(
R.
)
→
C.
1
(
R.
)
/
R.
,
G
(
x
)
↦
∫
G
(
x
)
d
x
=
G
(
x
)
+
R.
,
{\ displaystyle \ int \ cdot \, \, \ mathrm {d} x \ colon \ C ^ {0} (\ mathbb {R}) \ rightarrow C ^ {1} (\ mathbb {R}) / \ mathbb { R}, \ quad g (x) \ mapsto \ int g (x) {\ mathrm {d}} x = G (x) + \ mathbb {R},}
where is any antiderivative of .
G
(
x
)
{\ displaystyle G (x)}
G
(
x
)
{\ displaystyle g (x)}
Generalizations
Homomorphism theorem for algebraic structures:
If and are two algebraic structures of the same kind and if a homomorphism of this kind with a kernel , then applies .
(
A.
,
(
f
i
)
i
∈
{
1
,
...
,
n
}
)
{\ displaystyle (A, (f_ {i}) _ {i \ in \ {1, \ dotsc, n \}})}
(
B.
,
(
G
i
)
i
∈
{
1
,
...
,
n
}
)
{\ displaystyle (B, (g_ {i}) _ {i \ in \ {1, \ dotsc, n \}})}
φ
:
A.
→
B.
{\ displaystyle \ varphi \ colon A \ to B}
θ
φ
{\ displaystyle \ theta _ {\ varphi}}
A.
/
θ
φ
≃
φ
(
A.
)
{\ displaystyle A / \ theta _ {\ varphi} \ simeq \ varphi (A)}
The theorem applies generally to every Abelian category .
The theorem also applies to the category of topological groups , for example ; however, the picture is then also to be understood in the categorical sense, so it is generally not the set-theoretical picture with the induced topology . Also, a bijective continuous homomorphism is only a categorical isomorphism if its inverse is continuous, i.e. H. if it is also a homeomorphism .
literature
Christian Karpfinger, Kurt Meyberg: Algebra. Groups - rings - bodies. Spektrum Akademischer Verlag, Heidelberg 2009, ISBN 978-3-8274-2018-3 , p. 54, p. 167-168
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">