BINAP

from Wikipedia, the free encyclopedia
Structural formula
BINAP Enantiomers Structural Formulas V.1.svg
( R ) -BINAP (left) and ( S ) -BINAP (right)
General
Surname BINAP
other names
  • ( S ) - (-) - 2,2'-Bis (diphenylphosphino) -1,1'-binaphthyl
  • ( R ) - (+) - 2,2'-Bis (diphenylphosphino) -1,1'-binaphthyl
  • ( RS ) - (±) -2,2'-bis (diphenylphosphino) -1,1'-binaphthyl
  • rac - (±) -2,2'-bis (diphenylphosphino) -1,1'-binaphthyl
Molecular formula C 44 H 32 P 2
Brief description

White solid

External identifiers / databases
CAS number
  • 76189-55-4 [( R ) -enantiomer]
  • 76189-56-5 [( S ) -enantiomer]
PubChem 634876
Wikidata Q795991
properties
Molar mass 622,67 g · mol -1
Physical state

firmly

Melting point

239-241 ° C [( S ) -enantiomer]

solubility

almost insoluble in water

safety instructions
GHS labeling of hazardous substances
07 - Warning

Caution

H and P phrases H: 315-319-335
P: 261-302 + 352-305 + 351 + 338
As far as possible and customary, SI units are used. Unless otherwise noted, the data given apply to standard conditions .

BINAP (2,2' – bis (diphenylphosphino) –1,1' – binaphthyl) is a bidentate diphosphine ligand with axial chirality , its pure ( R ) - or ( S ) -enantiomer in a variety of transition metal - catalyzed reactions, especially asymmetric hydrogenations , shows exceptional properties in terms of enantioselectivity and activity. BINAP was first used in 1980 by Noyori et al. presented. To date, BINAP is one of the few ligands that are of industrial importance, e.g. B. in the Takasago menthol process .

BINAP is manufactured from BINOL by reacting with bromotriphenylphosphonium bromide to form the corresponding dibromo compound and then reacting with magnesium to form a Di-Grignard reagent , which finally reacts with ClPPh 2 to form BINAP.

Individual evidence

  1. BINAP data sheet at Acros, accessed on December 25, 2019.
  2. a b c d Data sheet (S) - (-) - 2,2'-Bis (diphenylphosphino) -1,1'-binaphthyl, 97% Template: link text check / apostrophe from AlfaAesar, accessed on December 7, 2019 ( PDF )(JavaScript required) .
  3. A. Miyashita, A. Yasuda, H. Takaya, K. Toriumi, T. Ito, T. Souchi, R. Noyori, J. Am. Chem. Soc. 102 , 1980 , pp. 7932-7934.
  4. ^ Russell E. Malz: Catalysis of organic reactions. Marcel Dekker New York 1996, ISBN 0-8247-9807-4 ( limited preview in Google book search), p. 147.
  5. Reinhard Brückner : Reaction Mechanisms , 1st edition, Spektrum Akademischer Verlag, Berlin 1996, pp. 194–195, 185–186.