Throughput

from Wikipedia, the free encyclopedia

The data throughput indicates the net amount of data per time that can be transmitted via a wired or wireless network. The pure user data are taken into account for the data throughput . In the case of the data transmission rate, however, any control data ( overhead ) are included in the calculation.

An example: The data throughput of an 11 Mbit / s WLAN is approx. 50% of the transmission rate, i.e. approx. 5.5 Mbit / s net. The WLAN standard 802.11n introduced in 2006 (as of August 2012) assumes a data throughput of 40% of the maximum data transfer rate. Accordingly, from the theoretically possible 600 Mbit / s, a maximum of 240 Mbit / s can be achieved in practice. This 600 Mbit / s gross with 802.11n is achieved by a router in the 5 GHz band with four antennas and a channel bandwidth of 40 MHz. As a further prerequisite, both the transmitter and the receiver must each have four antennas and the radio connection between them must be "good".

If, for example, a smartphone only has one antenna, the 11n standard in the 5 GHz band only allows a maximum of 150 Mbit / s gross. In 2012, the 802.11ac standard, or 11ac for short, was introduced. With 11ac , a smartphone with an antenna in the 5 GHz band achieves a data transfer rate of 433 Mbit / s (gross).

Examples

technology Frequency
in GHz
Fastest transfer mode Range
in m
Data transfer rate
( gross rate )
theory

Throughput rate
( net rate )
practice

Fast Ethernet - - 100 100 Mbit / s 94 Mbit / s
Gigabit Ethernet - - 100 1 Gbit / s 940 Mbit / s
POF - - 30-50 100 Mbit / s 94 Mbit / s
WLAN 802.11a (Wi-Fi 1) 5 1x1 10-120 54 Mbit / s 5-25 Mbit / s
WLAN 802.11b (Wi-Fi 2) 2.4 1x1 10-140 11 Mbit / s 1-4.4 Mbit / s
WLAN 802.11g (Wi-Fi 3) 2.4 1x1 10-300 54 Mbit / s 5-25 Mbit / s
WLAN 802.11n (Wi-Fi 4) 2.4 1x1 to 4x4 10-300 150 Mbit / s (40 MHz, 1 antenna) - 600 Mbit / s (4x4 MIMO ) 5–240 Mbit / s
5 1x1 to 4x4 10-300 150 Mbit / s (40 MHz, 1 antenna) - 600 Mbit / s (4x4 MIMO) 5–240 Mbit / s
WLAN 802.11ac (Wi-Fi 5) 5 1x1 to 8x8 Max. 50 433 Mbit / s (80 MHz, 1 antenna) - 1,300 Mbit / s (80 MHz, 3x3 MIMO)
or 6,900 Mbit / s (160 MHz, 8x8 MU-MIMO downlink)
Max. up to approx. 660 Mbit / s
WLAN 802.11ad 60 1x1 Max. 10 up to 6,700 Mbit / s (2,000 MHz) ??
WLAN 802.11ax (Wi-Fi 6) 2,4 and 5 8x8 over 50 up to 9,600 Mbit / s (160 MHz, 8x8 MU-MIMO downlink and uplink) ??
PCI Express 3.0 x1 - - - 8 Gbit / s approx. 1 GByte / s
Powerline - - 200 14 Mbit / s 6 Mbit / s
Powerline Turbo - - 200 85 Mbit / s 50 Mbit / s
Powerline AV - - 200 200 Mbit / s 90 Mbit / s
Powerline AV2 - - ? 500 Mbit / s 200 Mbit / s
Powerline AV1200 - - 400 1,200 Mbit / s (2-68 MHz, MIMO) 400 Mbit / s
Powerline AV2000 - - 400 1,800 Mbit / s (2–86 MHz, MIMO) approx. 280 Mbit / s (one TCP data stream) - approx. 400 Mbit / s (parallel data streams)
G.hn - - 2,400 Mbit / s
Mediaxtream - - 30th 882 Mbit / s 300 Mbit / s
FireWire 400 - - 4.5-14 400 Mbit / s 240 Mbit / s
FireWire 800 - - 4.5-100 800 Mbit / s 480 Mbit / s
FireWire S3200 - - 4.5– ?? 3,200 Mbit / s 1,920 Mbit / s
SATA 6G - - - 6 Gbit / s 560 Mbytes / s
Thunderbolt - - 3 (electr.) To 100 (optical) 20 Gbit / s (2 channels, each channel 10 Gbit / s) ??
Thunderbolt 2 - PCIe 2.0 x4 ? 20 Gbit / s (20 channels, 1 Gbit / s per channel) > 1.3 GByte / s
Thunderbolt 3 / NVMe SSD - PCIe 3.0 x4 ? 40 Gbit / s > 24 GBit / s
USB 1.0 / 1.1 - LowSpeed ​​- FullSpeed 2-5 1.5-12 Mbit / s 0.825-6.6 Mbit / s
USB 2.0 - High speed 2-5 480 Mbit / s up to 280 Mbit / s
USB 3.0 (USB 3.1 Gen 1) - SuperSpeed 3 5 Gbit / s 480 MByte / s (3.84 Gbit / s)
USB 3.1 (USB 3.1 Gen 2) - SuperSpeedPlus 3 10 Gbit / s > 900 MByte / s (7.2 Gbit / s)
Remarks:
  1. To convert Mbit / s to MB / s: 8 Mbit / s = 1 MB / s ≈ 0.95 MiB / s. For a further explanation see article binary prefix .

Individual evidence

  1. a b c d Ernst Ahlers: Funk overview. WLAN knowledge for device selection and troubleshooting . In: c't 15/2015, 178-181. ISSN  0724-8679
  2. a b Ernst Ahlers: throw out nets. The right basis for the home network. In: c't 12/2007, 120-123. ISSN  0724-8679
  3. a b Dušan Živadinović: Itself is Spiderman. Network expansion: Connect additional rooms and buildings to the LAN . In: c't 08/2008, 108-113. ISSN  0724-8679
  4. a b Ernst Ahlers: Gigafunkmechanik. The technical tricks of gigabit WiFi . In: c't 19/2012, 92-94. ISSN  0724-8679
  5. a b c d Ernst Ahlers: Powerline squiggles. Powerline adapter for 2000 Mbit / s gross. In: c't 2/2017, 38-39. ISSN  0724-8679
  6. Uwe Schulze: Optimized throughput. Wi-Fi 6 in corporate use. In: iX - magazine for professional information technology 2/2020, 78–85. ISSN  0935-9680
  7. WLAN 802.11n: Comparison of the IEEE standards
  8. Ernst Ahlers: Gigabit radio operator . In: c't . No. 19 , 2012, p. 86–91 ( paid journal article ). ISSN 0724-8679 
  9. ^ Ernst Ahlers: Stromvernetzt. Powerline adapter with 500 Mbit / s gross throughput . In: c't 12/2011, 114-119. ISSN  0724-8679
  10. Benjamin Benz: Fast as an arrow. The third USB generation delivers transfer rates of 300 Mbytes / s. In: c't 22/2008, 212-215. ISSN  0724-8679
  11. a b Christof Windeck: One for all. USB Type C brings new features, but also confusion. In: c't 4/2017, 106-108. ISSN  0724-8679