John Woodland Hastings: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m →‎Publications: task, replaced: Photochem. Photobiol → Photochem. Photobiol. using AWB
m date fmt
 
(38 intermediate revisions by 17 users not shown)
Line 1: Line 1:
{{cleanup|reason=it has misplaced [[WP:EL]]s strewn throughout the article|date=August 2016}}
{{Use mdy dates|date=August 2014}}
{{Use mdy dates|date=August 2014}}
{{Infobox scientist
{{Infobox scientist
| name = John Woodland Hastings
| name = John Woodland Hastings
| image = Woody Hastings.jpg
| image = Woody Hastings.jpg
| image_size = 200px
| image_size = 200px
| caption =
| caption =
| birth_date = {{birth date|1927|3|24}}
| birth_date = {{birth date|1927|3|24}}
| birth_place = [[Salisbury, Maryland]]<ref name="NYT-obit-hastings"/>
| birth_place = [[Salisbury, Maryland]]<ref name="NYT-obit-hastings"/>
| death_date = {{Death date and age|2014|8|6|1927|3|24}}
| death_date = {{Death date and age|2014|8|6|1927|3|24}}
| death_place = [[Lexington, Massachusetts]]
| death_place = [[Lexington, Massachusetts]]
| residence = United States
| citizenship = United States
| nationality = American
| citizenship = United States
| workplaces = Instructor in Biological Sciences [[Northwestern University]] 1953-1957
| nationality = American
| workplaces = Instructor in Biological Sciences [[Northwestern University]] 1953-1957
Assistant Professor of Biochemistry [[University of Illinois]] 1957-1966
Assistant Professor of Biochemistry [[University of Illinois]] 1957-1966
Professor of Biology [[Harvard University]], 1966-1986;
Professor of Biology [[Harvard University]], 1966-1986;
Paul C. Mangelsdorf Professor of Natural Sciences Harvard University 1986 - 2014
Paul C. Mangelsdorf Professor of Natural Sciences Harvard University 1986 - 2014
| alma_mater = [[Swarthmore College]], 1944-1947; BA 1947 ([[United States Navy|Navy]] [[V-12 Navy College Training Program|V-12 medical officers training program]])
| alma_mater = [[Swarthmore College]], 1944-1947; BA 1947 ([[United States Navy|Navy]] [[V-12 Navy College Training Program|V-12 medical officers training program]])
[[Princeton University]], 1948-1951; [[Master of Arts|M.A.]] 1950, [[Doctorate|PhD.]] 1951
[[Princeton University]], 1948-1951; [[Master of Arts|M.A.]] 1950, [[Doctorate|PhD.]] 1951
[[Johns Hopkins University]], 1951-1953 [[Postdoctoral research|Postdoctoral]] [[Fellow]]
[[Johns Hopkins University]], 1951-1953 [[Postdoctoral research|Postdoctoral]] [[Fellow]]
| known_for = Founding circadian biology
| known_for = Founding circadian biology
| awards = [[NATO]] Senior Fellow in Science, Foundation Curie, Orsay, France, 1977
| awards = [[NATO]] Senior Fellow in Science, Foundation Curie, Orsay, France, 1977
| fields = [[Bioluminescence]], [[Circadian rhythms]]
| fields = [[Bioluminescence]], [[Circadian rhythms]]
| thesis_title = Oxygen concentration and bioluminescence intensity
| thesis_title = Oxygen concentration and bioluminescence intensity
| thesis_url = https://search.proquest.com/docview/302031068/
| thesis_url = https://search.proquest.com/docview/302031068/
Line 29: Line 27:
| academic_advisors = [[William D. McElroy]]
| academic_advisors = [[William D. McElroy]]
| doctoral_students =
| doctoral_students =
| notable_students =
| notable_students =
}}
}}


'''John Woodland''' "'''Woody'''" '''Hastings''', (March 24, 1927 – August 6, 2014) was a leader in the field of [[photobiology]], especially [[bioluminescence]], and was one of the founders of the field of circadian biology (the study of [[circadian rhythms]], or the sleep-wake cycle).<ref name="SleepMed">{{cite web|url=http://sleep.med.harvard.edu/what-we-do/farrell-prize-in-sleep-medicine/recipients/Hastings-2006 |title=2006 Farrell Prize recipient J. Woodland Hastings &#124; Division of Sleep Medicine @ Harvard |publisher=Sleep.med.harvard.edu |date= |accessdate=2011-06-17}}</ref> He was the Paul C. Mangelsdorf Professor of [[Natural Science]]s and Professor of [[Molecular Biology|Molecular]] and [[Cellular Biology|Cellular]] [[Biology]] at [[Harvard University]].<ref>{{cite web|url=http://sleep.med.harvard.edu/people/faculty/211/J+Woodland+Hastings+PhD |title=Faculty Profile: J. Woodland Hastings, PhD &#124; Division of Sleep Medicine @ Harvard Medical School |publisher=Sleep.med.harvard.edu |date= |accessdate=2011-06-17}}</ref><ref>[http://golgi.harvard.edu/hastings/dino.html Hastings Lab Home page] {{webarchive |url=https://web.archive.org/web/20091126103837/http://golgi.harvard.edu/hastings/dino.html |date=November 26, 2009 }}</ref><ref name="HastingsLab">{{cite web|url=http://mcb.harvard.edu/hastings/Images/woody.html |title=Hastings Lab: J. Woodland Hastings |publisher=Mcb.harvard.edu |date= |accessdate=2011-06-17}}</ref> He published over 400 papers and co-edited three books.<ref name="HastingsLab" />
'''John Woodland''' "'''Woody'''" '''Hastings''', (March 24, 1927 – August 6, 2014) was a leader in the field of [[photobiology]], especially [[bioluminescence]], and was one of the founders of the field of circadian biology (the study of [[circadian rhythms]], or the sleep-wake cycle).<ref name="SleepMed">{{cite web|url=http://sleep.med.harvard.edu/what-we-do/farrell-prize-in-sleep-medicine/recipients/Hastings-2006 |title=2006 Farrell Prize recipient J. Woodland Hastings &#124; Division of Sleep Medicine @ Harvard |publisher=Sleep.med.harvard.edu |access-date=2011-06-17}}</ref> He was the Paul C. Mangelsdorf Professor of [[Natural Science]]s and Professor of [[Molecular Biology|Molecular]] and [[Cellular Biology|Cellular]] [[Biology]] at [[Harvard University]].<ref>{{cite web|url=http://sleep.med.harvard.edu/people/faculty/211/J+Woodland+Hastings+PhD |title=Faculty Profile: J. Woodland Hastings, PhD &#124; Division of Sleep Medicine @ Harvard Medical School |publisher=Sleep.med.harvard.edu |access-date=2011-06-17}}</ref><ref>[http://golgi.harvard.edu/hastings/dino.html Hastings Lab Home page] {{webarchive |url=https://web.archive.org/web/20091126103837/http://golgi.harvard.edu/hastings/dino.html |date=November 26, 2009 }}</ref><ref name="HastingsLab">{{cite web |url=http://mcb.harvard.edu/hastings/Images/woody.html |title=Hastings Lab: J. Woodland Hastings |publisher=Mcb.harvard.edu |access-date=2011-06-17 |archive-url=https://web.archive.org/web/20110717141257/http://mcb.harvard.edu/hastings/Images/woody.html |archive-date=July 17, 2011 |url-status=dead }}</ref> He published over 400 papers and co-edited three books.<ref name="HastingsLab" />


Hastings research on bioluminescence principally focused on [[bacterial]] [[luminescence]] (over 150 papers) and [[dinoflagellates]] (over 80 papers).<ref name="HastingsLab" /> In addition to bacteria and dinoflagellates, he, with his students and colleagues, also published papers on the [[biochemical]] and [[molecular]] mechanisms of light production in fungi, [[cnidarians]], [[ctenophore]]s, [[polychaetes]], insects ([[fireflies]] and [[dipterans]]), [[ostracod]] [[crustaceans]], [[millipedes]], [[tunicates]], and [[fishes]] with bacterial light organs. His laboratory produced the first evidence for [[quorum sensing]] in bacteria,<ref>Hastings, J.W. and Greenberg, E.P. (1999)</ref> early evidence of the molecular mechanisms of circadian clock regulation in [[organisms]] (first using dinoflagellate luminescence and then expanded to other [[cell (biology)|cell]]ular [[protein]]s),<ref name="SleepMed" /><ref>Sweeney, B.M. and Hastings, J.W. (1957)</ref><ref>Hastings, J.W. (2007)</ref> and some of the initial studies of energy transfer in [[green fluorescent protein]]s (GFP) in [[cnidarian]] luminescence.<ref name="Morin, J.G 1971">Morin, J.G. and Hastings, J.W. (1971)</ref><ref name="Hastings, J.W 2006">Hastings, J.W. and Morin, J.G. (2006)</ref>
Hastings research on bioluminescence principally focused on [[bacterial]] [[luminescence]] (over 150 papers) and [[dinoflagellates]] (over 80 papers).<ref name="HastingsLab" /> In addition to bacteria and dinoflagellates, he, with his students and colleagues, also published papers on the [[biochemical]] and [[molecular]] mechanisms of light production in fungi, [[cnidarians]], [[ctenophore]]s, [[polychaetes]], insects ([[fireflies]] and [[dipterans]]), [[ostracod]] [[crustaceans]], [[millipedes]], [[tunicates]], and [[fishes]] with bacterial light organs. His laboratory produced the first evidence for [[quorum sensing]] in bacteria,<ref>Hastings, J.W. and Greenberg, E.P. (1999)</ref> early evidence of the molecular mechanisms of circadian clock regulation in [[organisms]] (first using dinoflagellate luminescence and then expanded to other [[cell (biology)|cell]]ular [[protein]]s),<ref name="SleepMed" /><ref>Sweeney, B.M. and Hastings, J.W. (1957)</ref><ref>Hastings, J.W. (2007)</ref> and some of the initial studies of energy transfer in [[green fluorescent protein]]s (GFP) in [[cnidarian]] luminescence.<ref name="Morin, J.G 1971">Morin, J.G. and Hastings, J.W. (1971)</ref><ref name="Hastings, J.W 2006">Hastings, J.W. and Morin, J.G. (2006)</ref>


==Early life==
==Early life==
Hastings lived in [[Seaford, Delaware]] during his early childhood; in 1937, he joined the choir at the [[Cathedral of Saint John the Divine]] and attended the choir's in-house boarding school, visiting his family during vacations. Hastings moved to [[Lenox School]] in [[Lenox, Massachusetts]] in 1941 to complete his secondary education and was interested in literature, physics, mathematics, [[ice hockey]] and basketball.<ref name="Pnas.org">http://www.pnas.org/content/104/3/693.full.pdf</ref><ref>{{cite journal|pmc=1783375|title=Profile of J. Woodland Hastings|author=Davis, Tinsley H.|date=2007-01-10|doi=10.1073/pnas.0610519104|pmid=17215362|volume=104|issue=3|journal=Proc. Natl. Acad. Sci. U.S.A.|pages=693–5}}</ref>
Hastings lived in [[Seaford, Delaware]], during his early childhood; in 1937, he joined the choir at the [[Cathedral of St. John the Divine]] and attended the choir's in-house boarding school, visiting his family during vacations. Hastings moved to [[Lenox School]] in [[Lenox, Massachusetts]], in 1941 to complete his secondary education and was interested in literature, physics, mathematics, [[ice hockey]] and basketball.<ref name=Davis2007>{{cite journal |last1=Davis |first1=Tinsley H. |title=Profile of J. Woodland Hastings |journal=Proceedings of the National Academy of Sciences |date=16 January 2007 |volume=104 |issue=3 |pages=693–695 |doi=10.1073/pnas.0610519104 |pmid=17215362 |pmc=1783375 |bibcode=2007PNAS..104..693D |doi-access=free }}</ref>


==Awards and honors==
==Awards and honors==
Line 55: Line 53:


==Career==
==Career==
Hastings began his graduate studies at [[Princeton University]] in 1948 in the laboratory of [[E. Newton Harvey]], the world leader of luminescence studies at the time, and focused on the role of oxygen in the luminescence of bacteria, fireflies, ostracod crustaceans and fungi. He received his PhD in 1951.<ref name="thesis-hastings-1951">{{cite thesis |url=https://search.proquest.com/docview/302031068/ |title=Oxygen concentration and bioluminescence intensity |date=1951 |publisher=[[Princeton University]] |type=Ph.D. |last=Hastings |first=John W. |via=[[ProQuest]] |subscription=yes |oclc=80712719}}</ref> He then joined the lab of [[William D. McElroy]], another student of Harvey’s, at [[Johns Hopkins University]] where he discovered both the stimulatory effects of [[coenzyme A]] and gating control by [[oxygen]] of firefly luminescence, and that [[Flavin group|flavin]] is a substrate in bacterial luminescence.
Hastings began his graduate studies at [[Princeton University]] in 1948 in the laboratory of [[E. Newton Harvey]], the world leader of luminescence studies at the time, and focused on the role of oxygen in the luminescence of bacteria, fireflies, ostracod crustaceans and fungi. He received his PhD in 1951.<ref name="thesis-hastings-1951">{{cite thesis |id={{ProQuest|302031068}} |title=Oxygen concentration and bioluminescence intensity |date=1951 |publisher=[[Princeton University]] |type=Ph.D. |last=Hastings |first=John W. |oclc=80712719 }}</ref> He then joined the lab of [[William D. McElroy]], another student of Harvey’s, at [[Johns Hopkins University]] where he discovered both the stimulatory effects of [[coenzyme A]] and gating control by [[oxygen]] of firefly luminescence, and that [[Flavin group|flavin]] is a substrate in bacterial luminescence.


In 1953 he joined the faculty in the Department of Biological Sciences at [[Northwestern University]]. In 1954 he began a long collaboration with [[Beatrice Sweeney]], who was then at the [[Scripps Institution of Oceanography]], in elucidating the cellular and biochemical mechanisms of luminescence in the unicellular dinoflagellate ''[[Lingulodinium polyedrum]]'' (formerly known as ''Gonyaulax polyedra''). A byproduct of this initial research was their discovery of circadian control of the luminescence.
In 1953 he joined the faculty in the Department of Biological Sciences at [[Northwestern University]]. In 1954 he began a long collaboration with [[Beatrice M. Sweeney]], who was then at the [[Scripps Institution of Oceanography]], in elucidating the cellular and biochemical mechanisms of luminescence in the unicellular dinoflagellate ''[[Lingulodinium polyedrum]]'' (formerly known as ''Gonyaulax polyedra''). A byproduct of this initial research was their discovery of circadian control of the luminescence.


In 1957, Hastings next took a faculty position in the Biochemistry Division of the Chemistry Department at the [[University of Illinois at Urbana–Champaign]] where he continued his focus on dinoflagellate and bacterial luminescence and dinoflagellate circadian rhythms. Hastings joined the faculty of [[Harvard University]] as Professor of Biology in 1966. During this period he continued and expanded his studies of circadian rhythms in dinoflagellates and luminescence in bacteria, dinoflagellates and other organisms. He was elected to the National Academy of Sciences in 2003<ref name="Pnas.org" /> and received the Farrell Prize in Sleep Medicine for his work on circadian rhythms in 2006.<ref name="SleepMed" /><ref>[http://golgi.harvard.edu/NewsEvents/News/Hastings.html Dept of MCB, Harvard U: News and Events - MCB News] {{webarchive |url=https://web.archive.org/web/20061030090134/http://golgi.harvard.edu/NewsEvents/News/Hastings.html |date=October 30, 2006 }}</ref>
In 1957, Hastings next took a faculty position in the Biochemistry Division of the Chemistry Department at the [[University of Illinois at Urbana–Champaign]] where he continued his focus on dinoflagellate and bacterial luminescence and dinoflagellate circadian rhythms. Hastings joined the faculty of [[Harvard University]] as Professor of Biology in 1966. During this period he continued and expanded his studies of circadian rhythms in dinoflagellates and luminescence in bacteria, dinoflagellates and other organisms. He was elected to the National Academy of Sciences in 2003<ref name=Davis2007/> and received the Farrell Prize in Sleep Medicine for his work on circadian rhythms in 2006.<ref name="SleepMed" /><ref>[http://golgi.harvard.edu/NewsEvents/News/Hastings.html Dept of MCB, Harvard U: News and Events - MCB News] {{webarchive |url=https://web.archive.org/web/20061030090134/http://golgi.harvard.edu/NewsEvents/News/Hastings.html |date=October 30, 2006 }}</ref>


For over 50 years he also had an affiliation with the [[Marine Biological Laboratory]] in Woods Hole, Massachusetts. He was the director of the [[Physiology]] Course there from 1962–1966, and served as a trustee from 1966–1970.
For over 50 years he also had an affiliation with the [[Marine Biological Laboratory]] in Woods Hole, Massachusetts. He was the director of the [[Physiology]] Course there from 1962 to 1966, and served as a trustee from 1966 to 1970.


==Research Interests <ref name="Pnas.org" />==
==Research Interests<ref name=Davis2007/>==


'''Luminescent Bacteria''': Hastings{{'}} investigations of luminous bacteria acted as a catalyst for the discoveries of the biochemical mechanisms involved in their light production,<ref>Nealson, K., Platt, T. and Hastings, J.W. (1970)</ref> the discovery of a flavin to be a substrate in its [[luciferase]] reaction,<ref>Hastings, J.W. and Gibson, Q.H. (1963)</ref> the determination of [[gene]] regulation of the luciferases, and the first evidence for [[quorum sensing]],<ref>Nealson, K., Platt, T. and Hastings, J.W. (1970), Hastings, J.W. and Greenberg, E.P. (1999)</ref> a form of bacterial communication. In quorum sensing (initially termed autoinduction), the bacteria release a substance into the medium, the autoinducer. Once the concentration of this substance reaches a critical level (a measure of the number of bacteria in a limited area), [[transcription (genetics)|transcription]] of specific other genes that had been repressed are turned on. Once the sequenced autoinducer gene was found to occur widely in [[gram-negative bacteria]] quorum sensing became accepted in the early 1990s. It is now known that in many [[pathogen]]ic bacteria, there is delayed production of [[toxins]], which serve to greatly augment their pathogenicity, this is similar to what happens for luciferase proteins. By curtailing their toxin output until the bacterial populations are substantial, these bacteria can generate massive quantities of toxin quickly and thereby swamp the defences of the host.
'''Luminescent Bacteria''': Hastings{{'}} investigations of luminous bacteria acted as a catalyst for the discoveries of the biochemical mechanisms involved in their light production,<ref>Nealson, K., Platt, T. and Hastings, J.W. (1970)</ref> the discovery of a flavin to be a substrate in its [[luciferase]] reaction,<ref>Hastings, J.W. and Gibson, Q.H. (1963)</ref> the determination of [[gene]] regulation of the luciferases, and the first evidence for [[quorum sensing]],<ref>Nealson, K., Platt, T. and Hastings, J.W. (1970), Hastings, J.W. and Greenberg, E.P. (1999)</ref> a form of bacterial communication. In quorum sensing (initially termed autoinduction), the bacteria release a substance into the medium, the autoinducer. Once the concentration of this substance reaches a critical level (a measure of the number of bacteria in a limited area), [[transcription (genetics)|transcription]] of specific other genes that had been repressed are turned on. Once the sequenced autoinducer gene was found to occur widely in [[gram-negative bacteria]] quorum sensing became accepted in the early 1990s. It is now known that in many [[pathogen]]ic bacteria, there is delayed production of [[toxins]], which serve to greatly augment their pathogenicity, this is similar to what happens for luciferase proteins. By curtailing their toxin output until the bacterial populations are substantial, these bacteria can generate massive quantities of toxin quickly and thereby swamp the defences of the host.
Line 74: Line 72:


==Death==
==Death==
Hastings died of [[pulmonary fibrosis]] on August 6, 2014 at [[Lexington, Massachusetts]].<ref name="NYT-obit-hastings">{{cite news|last1=Slotnik|first1=Daniel E.|title=J. W. Hastings, 87, a Pioneer in Bioluminescence Research, Dies|url=https://www.nytimes.com/2014/08/10/science/j-w-hastings-87-a-pioneer-in-bioluminescence-research-dies.html?_r=1|accessdate=3 August 2016|publisher=[[New York Times]]}}</ref>
Hastings died of [[pulmonary fibrosis]] on August 6, 2014, at [[Lexington, Massachusetts]].<ref name="NYT-obit-hastings">{{cite news|last1=Slotnik|first1=Daniel E.|title=J. W. Hastings, 87, a Pioneer in Bioluminescence Research, Dies|url=https://www.nytimes.com/2014/08/10/science/j-w-hastings-87-a-pioneer-in-bioluminescence-research-dies.html?_r=1|access-date=3 August 2016|work=[[New York Times]]|date=August 9, 2014 }}</ref>


==Publications==
==Publications==
* [http://www.mcb.harvard.edu/hastings/dino.html Publications by J.W. Hastings]
* [https://web.archive.org/web/20100701074458/http://www.mcb.harvard.edu/hastings/dino.html Publications by J.W. Hastings]


Selected publications:
Selected publications:
* {{cite journal | last1 = Hastings | first1 = J.W. | year = 2007 | title = The ''Gonyaulax'' clock at 50: translational control of circadian expression | url = | journal = Cold Spring Harb Symp Quant Biol. | volume = 72 | issue = | pages = 141–144 | doi=10.1101/sqb.2007.72.026}}
* {{cite journal | last1 = Hastings | first1 = J.W. | year = 2007 | title = The ''Gonyaulax'' clock at 50: translational control of circadian expression | journal = Cold Spring Harb Symp Quant Biol | volume = 72 | pages = 141–144 | doi=10.1101/sqb.2007.72.026| pmid = 18419271 | doi-access = free }}
* {{cite journal | last1 = Hastings | first1 = J.W. | last2 = Morin | first2 = J.G. | year = 2006 | title = Photons for reporting molecular events: green fluorescent protein and four luciferase systems | url = | journal = Methods Biochem Anal. | volume = 47 | issue = | pages = 15–38 | doi=10.1002/0471739499.ch2| pmid = 16335708 | series = Methods of Biochemical Analysis | isbn = 9780471739494 }}
* {{cite journal | last1 = Hastings | first1 = J.W. | last2 = Morin | first2 = J.G. | year = 2006 | title = Photons for reporting molecular events: green fluorescent protein and four luciferase systems | journal = Methods Biochem Anal. | volume = 47 | pages = 15–38 | doi=10.1002/0471739499.ch2| pmid = 16335708 | series = Methods of Biochemical Analysis | isbn = 9780471739494 }}
* {{cite journal | last1 = Nealson | first1 = K.H. | last2 = Hastings | first2 = J.W. | year = 2006 | title = Quorum sensing on a global scale: massive numbers of bioluminescent bacteria make milky seas | journal = Appl. Environ. Microbiol. | volume = 72 | issue = 4| pages = 2295–2297 | doi=10.1128/aem.72.4.2295-2297.2006 | pmid=16597922 | pmc=1448986}}
* {{cite journal | last1 = Nealson | first1 = K.H. | last2 = Hastings | first2 = J.W. | year = 2006 | title = Quorum sensing on a global scale: massive numbers of bioluminescent bacteria make milky seas | journal = Appl. Environ. Microbiol. | volume = 72 | issue = 4| pages = 2295–2297 | doi=10.1128/aem.72.4.2295-2297.2006 | pmid=16597922 | pmc=1448986| bibcode = 2006ApEnM..72.2295N }}
* {{cite journal | last1 = Liu | first1 = L. | last2 = Wilson | first2 = T. | last3 = Hastings | first3 = J.W. | year = 2004 | title = Molecular evolution of dinoflagellate luciferases, enzymes with three catalytic domains in a single polypeptide | journal = Proc. Natl. Acad. Sci. USA | volume = 101 | issue = 47| pages = 16555–16560 | doi=10.1073/pnas.0407597101 | pmid=15545598 | pmc=534537}}
* {{cite journal | last1 = Liu | first1 = L. | last2 = Wilson | first2 = T. | last3 = Hastings | first3 = J.W. | year = 2004 | title = Molecular evolution of dinoflagellate luciferases, enzymes with three catalytic domains in a single polypeptide | journal = Proc. Natl. Acad. Sci. USA | volume = 101 | issue = 47| pages = 16555–16560 | doi=10.1073/pnas.0407597101 | pmid=15545598 | pmc=534537| bibcode = 2004PNAS..10116555L | doi-access = free }}
* {{cite journal | last1 = Viviani | first1 = V.R. | last2 = Hastings | first2 = J.W. | last3 = Wilson | first3 = T. | year = 2002 | title = Two bioluminescent Diptera: the North American ''Orfelia fultoni'' and the Australian ''Arachnocampa flava''. Similar niche, different bioluminescence systems | url = | journal = Photochem. Photobiol. | volume = 75 | issue = 1| pages = 22–27 | doi=10.1562/0031-8655(2002)075<0022:tbdtna>2.0.co;2 | pmid=11837324}}
*{{cite journal | last1 = Okamoto | first1 = OK | last2 = Hastings | first2 = JW | date = Dec 2003 | title = Genome-wide analysis of redox-regulated genes in a dinoflagellate | journal = Gene| volume = 321 | pages = 73–81 | pmid = 14636994 | doi = 10.1016/j.gene.2003.07.003 }}
*{{cite journal | last1 = Okamoto | first1 = OK | last2 = Hastings | first2 = JW | year = 2003 | title = Novel dinoflagellate clock-related genes identified through microarray analysis | journal = Journal of Phycology | volume = 39 | issue = 3| pages = 519–526 | doi = 10.1046/j.1529-8817.2003.02170.x | s2cid = 83666855 }}
* {{cite journal | last1 = Viviani | first1 = V.R. | last2 = Hastings | first2 = J.W. | last3 = Wilson | first3 = T. | year = 2002 | title = Two bioluminescent Diptera: the North American ''Orfelia fultoni'' and the Australian ''Arachnocampa flava''. Similar niche, different bioluminescence systems | journal = Photochem. Photobiol. | volume = 75 | issue = 1| pages = 22–27 | doi=10.1562/0031-8655(2002)075<0022:tbdtna>2.0.co;2 | pmid=11837324| s2cid = 198153893 }}
*{{cite journal | last1 = Okamoto | first1 = OK | last2 = Liu | first2 = L | last3 = Robertson | first3 = DL | last4 = Hastings | first4 = JW | date = Dec 2001 | title = Members of a dinoflagellate luciferase gene family differ in synonymous substitution rates | journal = Biochemistry | volume = 40 | issue = 51| pages = 15862–8 | pmid = 11747464 | doi = 10.1021/bi011651q }}
*{{cite journal | last1 = Okamoto | first1 = OK | last2 = Robertson | first2 = DL | last3 = Fagan | first3 = TF | last4 = Hastings | first4 = JW | last5 = Colepicolo | first5 = P | date = Jun 2001 | title = Different regulatory mechanisms modulate the expression of a dinoflagellate iron-superoxide dismutase | journal = J. Biol. Chem. | volume = 276 | issue = 23| pages = 19989–93 | pmid = 11264289 | doi = 10.1074/jbc.M101169200 | doi-access = free }}
* Hastings, J.W. and Wood, K.V. (2001) Luciferases did not all evolve from precursors having similar enzymatic properties. pp.&nbsp;199–210, In, Photobiology 2000 (D. Valenzeno and T. Coohill, eds.) Valdenmar Publ. Co., Overland Park, KS.
* Hastings, J.W. and Wood, K.V. (2001) Luciferases did not all evolve from precursors having similar enzymatic properties. pp.&nbsp;199–210, In, Photobiology 2000 (D. Valenzeno and T. Coohill, eds.) Valdenmar Publ. Co., Overland Park, KS.
* {{cite journal | last1 = Hastings | first1 = J.W. | year = 2001 | title = Fifty years of fun | url = | journal = J. Biol. Rhythms | volume = 16 | issue = 1| pages = 5–18 | doi=10.1177/074873040101600102| pmid = 11220778 }}
* {{cite journal | last1 = Hastings | first1 = J.W. | year = 2001 | title = Fifty years of fun | journal = J. Biol. Rhythms | volume = 16 | issue = 1| pages = 5–18 | doi=10.1177/074873040101600102| pmid = 11220778 | s2cid = 35410216 }}
* {{cite journal | last1 = Hastings | first1 = J.W. | last2 = Greenberg | first2 = E.P. | year = 1999 | title = Quorum Sensing: The explanation of a curious phenomenon reveals a common characteristic of bacteria | url = | journal = J. Bacteriol. | volume = 181 | issue = | pages = 2667–2668 }}
* {{cite journal | last1 = Hastings | first1 = J.W. | last2 = Greenberg | first2 = E.P. | year = 1999 | title = Quorum Sensing: The explanation of a curious phenomenon reveals a common characteristic of bacteria | journal = J. Bacteriol. | volume = 181 | issue = 9| pages = 2667–2668 | doi = 10.1128/JB.181.9.2667-2668.1999 | pmid = 10217751 | pmc = 93702 | doi-access = free }}
* {{cite journal | last1 = Comolli | first1 = J. | last2 = Hastings | first2 = J. W. | year = 1999 | title = Novel Effects on The Gonyaulax Circadian System Produced by the Protein Kinase Inhibitor Staurosporine | url = | journal = J. Biol. Rhythms | volume = 14 | issue = | pages = 10–18 }}
* {{cite journal | last1 = Comolli | first1 = J. | last2 = Hastings | first2 = J. W. | year = 1999 | title = Novel Effects on The Gonyaulax Circadian System Produced by the Protein Kinase Inhibitor Staurosporine | journal = J. Biol. Rhythms | volume = 14 | issue = 1| pages = 10–18 | doi = 10.1177/074873099129000399 | pmid = 10036988 | s2cid = 16522583 }}
* {{cite journal | last1 = Wilson | first1 = T. | last2 = Hastings | first2 = J.W. | year = 1998 | title = Bioluminescence | url = | journal = Annu. Rev. Cell Dev. Biol. | volume = 14 | issue = | pages = 197–230 | doi=10.1146/annurev.cellbio.14.1.197 | pmid=9891783}}
* {{cite journal | last1 = Wilson | first1 = T. | last2 = Hastings | first2 = J.W. | year = 1998 | title = Bioluminescence | journal = Annu. Rev. Cell Dev. Biol. | volume = 14 | pages = 197–230 | doi=10.1146/annurev.cellbio.14.1.197 | pmid=9891783}}
* {{cite journal | last1 = Hastings | first1 = J. W. | year = 1996 | title = Chemistries and colors of bioluminescent reactions: a review | url = | journal = Gene | volume = 173 | issue = 1 Spec No| pages = 5–11 | doi=10.1016/0378-1119(95)00676-1 | pmid=8707056}}
* {{cite journal | last1 = Hastings | first1 = J. W. | year = 1996 | title = Chemistries and colors of bioluminescent reactions: a review | journal = Gene | volume = 173 | issue = 1 Spec No| pages = 5–11 | doi=10.1016/0378-1119(95)00676-1 | pmid=8707056}}
* {{cite journal | last1 = Morse | first1 = D. | last2 = Milos | first2 = P.M. | last3 = Roux | first3 = E. | last4 = Hastings | first4 = J.W. | year = 1989 | title = Circadian regulation of the synthesis of substrate binding protein in the ''Gonyaulax''. bioluminescent system involves translational control | url = | journal = Proc. Natl. Acad. Sci. USA | volume = 86 | issue = | pages = 172–176 |doi=10.1073/pnas.86.1.172 | pmc = 286426 }}
* {{cite journal | last1 = Morse | first1 = D. | last2 = Milos | first2 = P.M. | last3 = Roux | first3 = E. | last4 = Hastings | first4 = J.W. | year = 1989 | title = Circadian regulation of the synthesis of substrate binding protein in the ''Gonyaulax''. bioluminescent system involves translational control | journal = Proc. Natl. Acad. Sci. USA | volume = 86 | issue = 1| pages = 172–176 |doi=10.1073/pnas.86.1.172 | pmid = 2911566 | pmc = 286426 | doi-access = free }}
* {{cite journal | last1 = Nicolas | first1 = M-T. | last2 = Nicolas | first2 = G. | last3 = Johnson | first3 = C.H. | last4 = Bassot | first4 = J-M. | last5 = Hastings | first5 = J.W. | year = 1987 | title = Characterization of the bioluminescent organelles in ''Gonyaulax polyedra''. (dinoflagellates) after fast-freeze freeze fixation and antiluciferase immunogold staining | url = | journal = J. Cell Biol. | volume = 105 | issue = 2| pages = 723–735 | doi=10.1083/jcb.105.2.723}}
* {{cite journal | last1 = Nicolas | first1 = M-T. | last2 = Nicolas | first2 = G. | last3 = Johnson | first3 = C.H. | last4 = Bassot | first4 = J-M. | last5 = Hastings | first5 = J.W. | year = 1987 | title = Characterization of the bioluminescent organelles in ''Gonyaulax polyedra''. (dinoflagellates) after fast-freeze freeze fixation and antiluciferase immunogold staining | journal = J. Cell Biol. | volume = 105 | issue = 2| pages = 723–735 | doi=10.1083/jcb.105.2.723| pmid = 2442172 | pmc = 2114768 }}
* {{cite journal | last1 = Johnson | first1 = C.H. | last2 = Hastings | first2 = J.W. | year = 1986 | title = The elusive mechanism of the circadian clock | url = | journal = American Scientist | volume = 74 | issue = | pages = 29–36 }}
* {{cite journal | last1 = Johnson | first1 = C.H. | last2 = Hastings | first2 = J.W. | year = 1986 | title = The elusive mechanism of the circadian clock | journal = American Scientist | volume = 74 | issue = 1| pages = 29–36 | bibcode = 1986AmSci..74...29H }}
* {{cite journal | last1 = Hastings | first1 = J.W. | year = 1983 | title = Biological diversity, chemical mechanisms and evolutionary origins of bioluminescent systems | url = | journal = Journal of Molecular Evolution | volume = 19 | issue = 5| pages = 309–321 | doi=10.1007/bf02101634 | pmid=6358519}}
* {{cite journal | last1 = Hastings | first1 = J.W. | year = 1983 | title = Biological diversity, chemical mechanisms and evolutionary origins of bioluminescent systems | journal = Journal of Molecular Evolution | volume = 19 | issue = 5| pages = 309–321 | doi=10.1007/bf02101634 | pmid=6358519| bibcode = 1983JMolE..19..309H | s2cid = 875590 }}
* {{cite journal | last1 = Taylor | first1 = W.R. | last2 = Dunlap | first2 = J.C. | last3 = Hastings | first3 = J.W. | year = 1982 | title = Inhibitors of protein synthesis on 80s ribosomes phase shift the Gonyaulax. clock | url = | journal = J. Exp. Biol. | volume = 97 | issue = | pages = 121–136 }}
* {{cite journal | last1 = Taylor | first1 = W.R. | last2 = Dunlap | first2 = J.C. | last3 = Hastings | first3 = J.W. | year = 1982 | title = Inhibitors of protein synthesis on 80s ribosomes phase shift the Gonyaulax. clock | journal = J. Exp. Biol. | volume = 97 | pages = 121–136 | doi = 10.1242/jeb.97.1.121 | pmid = 7201003 }}
* {{cite journal | last1 = Dunlap | first1 = J. | last2 = Hastings | first2 = J.W. | year = 1981 | title = The biological clock in ''Gonyaulax''. controls luciferase activity by regulating turnover | url = | journal = J. Biol. Chem. | volume = 256 | issue = | pages = 10509–10518 }}
* {{cite journal | last1 = Dunlap | first1 = J. | last2 = Hastings | first2 = J.W. | year = 1981 | title = The biological clock in ''Gonyaulax''. controls luciferase activity by regulating turnover | journal = J. Biol. Chem. | volume = 256 | issue = 20| pages = 10509–10518 | doi = 10.1016/S0021-9258(19)68651-5 | pmid = 7197271 | doi-access = free }}
* {{cite journal | last1 = Nealson | first1 = K.H. | last2 = Hastings | first2 = J.W. | year = 1979 | title = Bacterial bioluminescence: Its control and ecological significance | url = | journal = Microbiol. Rev. | volume = 43 | issue = | pages = 396–518 }}
* {{cite journal | last1 = Nealson | first1 = K.H. | last2 = Hastings | first2 = J.W. | year = 1979 | title = Bacterial bioluminescence: Its control and ecological significance | journal = Microbiol. Rev. | volume = 43 | issue = 4| pages = 396–518 | pmc = 281490 | pmid = 396467 | doi = 10.1128/mmbr.43.4.496-518.1979 }}
* {{cite journal | last1 = McMurry | first1 = L. | last2 = Hastings | first2 = J.W. | year = 1972 | title = Circadian rhythms: mechanism of luciferase activity changes in ''Gonyaulax'' | url = | journal = Biol. Bull. | volume = 143 | issue = 1| pages = 196–206 | doi=10.2307/1540339| pmid = 5049021 | jstor = 1540339 }}
* {{cite journal | last1 = McMurry | first1 = L. | last2 = Hastings | first2 = J.W. | year = 1972 | title = Circadian rhythms: mechanism of luciferase activity changes in ''Gonyaulax'' | url =https://www.biodiversitylibrary.org/part/24654 | journal = Biol. Bull. | volume = 143 | issue = 1| pages = 196–206 | doi=10.2307/1540339| pmid = 5049021 | jstor = 1540339 }}
* {{cite journal | last1 = Fogel | first1 = M. | last2 = Hastings | first2 = J.W. | year = 1972 | title = Bioluminescence: Mechanism and mode of control of scintillon activity | url = | journal = Proc. Natl. Acad. Sci. | volume = 69 | issue = 3| pages = 690–693 | doi=10.1073/pnas.69.3.690}}
* {{cite journal | last1 = Fogel | first1 = M. | last2 = Hastings | first2 = J.W. | year = 1972 | title = Bioluminescence: Mechanism and mode of control of scintillon activity | journal = Proc. Natl. Acad. Sci. | volume = 69 | issue = 3| pages = 690–693 | doi=10.1073/pnas.69.3.690| pmid = 4501583 | pmc = 426536| bibcode = 1972PNAS...69..690F | doi-access = free }}
* {{cite journal | last1 = Morin | first1 = J.G. | last2 = Hastings | first2 = J.W. | year = 1971 | title = Energy transfer in a bioluminescent system | url = | journal = J. Cell. Physiol. | volume = 77 | issue = 3| pages = 313–318 | doi=10.1002/jcp.1040770305 | pmid=4397528}}
* {{cite journal | last1 = Morin | first1 = J.G. | last2 = Hastings | first2 = J.W. | year = 1971 | title = Energy transfer in a bioluminescent system | journal = J. Cell. Physiol. | volume = 77 | issue = 3| pages = 313–318 | doi=10.1002/jcp.1040770305 | pmid=4397528| s2cid = 42494355 }}
* {{cite journal | last1 = Nealson | first1 = K. | last2 = Platt | first2 = T. | last3 = Hastings | first3 = J.W. | year = 1970 | title = The cellular control of the synthesis and activity of the bacterial luminescent system | url = | journal = J. Bacteriol. | volume = 104 | issue = | pages = 313–322 }}
* {{cite journal | last1 = Nealson | first1 = K. | last2 = Platt | first2 = T. | last3 = Hastings | first3 = J.W. | year = 1970 | title = The cellular control of the synthesis and activity of the bacterial luminescent system | journal = J. Bacteriol. | volume = 104 | issue = 1| pages = 313–322 | doi = 10.1128/JB.104.1.313-322.1970 | pmid = 5473898 | pmc = 248216 }}
* Wilson, T. and Hastings, J.W. (1970) Chemical and biological aspects of singlet excited molecular oxygen. Photophysiology (A.C. Giese, ed.), Vol. V, pp.&nbsp;49–95, Acad. Press, NY.
* Wilson, T. and Hastings, J.W. (1970) Chemical and biological aspects of singlet excited molecular oxygen. Photophysiology (A.C. Giese, ed.), Vol. V, pp.&nbsp;49–95, Acad. Press, NY.
* {{cite journal | last1 = Hastings | first1 = J.W. | last2 = Mitchell | first2 = G.W. | last3 = Mattingly | first3 = P.H. | last4 = Blinks | first4 = J.R. | last5 = Van Leeuwen | first5 = M. | year = 1969 | title = Response of aequorin bioluminescence to rapid changes in calcium concentration | url = | journal = Nature | volume = 222 | issue = 5198| pages = 1047–1050 | doi=10.1038/2221047a0}}
* {{cite journal | last1 = Hastings | first1 = J.W. | last2 = Mitchell | first2 = G.W. | last3 = Mattingly | first3 = P.H. | last4 = Blinks | first4 = J.R. | last5 = Van Leeuwen | first5 = M. | year = 1969 | title = Response of aequorin bioluminescence to rapid changes in calcium concentration | journal = Nature | volume = 222 | issue = 5198| pages = 1047–1050 | doi=10.1038/2221047a0| pmid = 4389183 | bibcode = 1969Natur.222.1047H | s2cid = 4182048 }}
* Hastings, J.W. Bioluminescence. (1968) ''Annu. Rev. Biochem.'' 37: 597-630.
* Hastings, J.W. Bioluminescence. (1968) ''Annu. Rev. Biochem.'' 37: 597-630.
* {{cite journal | last1 = Krieger | first1 = N. | last2 = Hastings | first2 = J.W. | year = 1968 | title = Bioluminescence: pH activity profiles of related luciferase fractions | url = | journal = Science | volume = 161 | issue = 3841| pages = 586–589 | doi=10.1126/science.161.3841.586}}
* {{cite journal | last1 = Krieger | first1 = N. | last2 = Hastings | first2 = J.W. | year = 1968 | title = Bioluminescence: pH activity profiles of related luciferase fractions | journal = Science | volume = 161 | issue = 3841| pages = 586–589 | doi=10.1126/science.161.3841.586| pmid = 5663301 | bibcode = 1968Sci...161..586K | s2cid = 40295305 }}
* {{cite journal | last1 = Hastings | first1 = J.W. | last2 = Gibson | first2 = Q.H. | year = 1963 | title = Intermediates in the bioluminescent oxidation of reduced flavin mononucleotide | url = | journal = J. Biol. Chem. | volume = 238 | issue = | pages = 2537–2554 }}
* {{cite journal | last1 = Hastings | first1 = J.W. | last2 = Gibson | first2 = Q.H. | year = 1963 | title = Intermediates in the bioluminescent oxidation of reduced flavin mononucleotide | journal = J. Biol. Chem. | volume = 238 | issue = 7 | pages = 2537–2554 | doi = 10.1016/S0021-9258(19)68004-X | pmid = 13960925 | doi-access = free }}
* {{cite journal | last1 = Bode | first1 = V.C. | last2 = DeSa | first2 = R.J. | last3 = Hastings | first3 = J.W. | year = 1963 | title = Daily rhythm in luciferin activity in ''Gonyaulax polyedra'' | url = | journal = Science | volume = 141 | issue = 3584| pages = 913–915 | doi=10.1126/science.141.3584.913}}
* {{cite journal | last1 = Bode | first1 = V.C. | last2 = DeSa | first2 = R.J. | last3 = Hastings | first3 = J.W. | year = 1963 | title = Daily rhythm in luciferin activity in ''Gonyaulax polyedra'' | journal = Science | volume = 141 | issue = 3584| pages = 913–915 | doi=10.1126/science.141.3584.913 | pmid = 17844013| bibcode = 1963Sci...141..913B | s2cid = 11378699 }}
* {{cite journal | last1 = DeSa | first1 = R.J. | last2 = Hastings | first2 = J.W. | last3 = Vatter | first3 = A.E. | year = 1963 | title = Luminescent "crystalline" particles: An organized subcellular bioluminescent system | url = | journal = Science | volume = 141 | issue = 3587| pages = 1269–1270 | doi=10.1126/science.141.3587.1269}}
* {{cite journal | last1 = DeSa | first1 = R.J. | last2 = Hastings | first2 = J.W. | last3 = Vatter | first3 = A.E. | year = 1963 | title = Luminescent "crystalline" particles: An organized subcellular bioluminescent system | journal = Science | volume = 141 | issue = 3587| pages = 1269–1270 | doi=10.1126/science.141.3587.1269| pmid = 14059774 | bibcode = 1963Sci...141.1269D | s2cid = 34981177 }}
* {{cite journal | last1 = Hastings | first1 = J.W. | year = 1959 | title = Unicellular clocks | url = | journal = Annu. Rev. Microbiol. | volume = 13 | issue = | pages = 297–312 | doi=10.1146/annurev.mi.13.100159.001501}}
* {{cite journal | last1 = Hastings | first1 = J.W. | year = 1959 | title = Unicellular clocks | journal = Annu. Rev. Microbiol. | volume = 13 | pages = 297–312 | doi=10.1146/annurev.mi.13.100159.001501}}
* {{cite journal | last1 = Hastings | first1 = J.W. | last2 = Sweeney | first2 = B.M. | year = 1957 | title = The luminescent reaction in extracts of the marine dinoflagellate ''Gonyaulax polyedra'' | url = | journal = J. Cell and Comp. Physiol | volume = 49 | issue = 2| pages = 209–226 | doi=10.1002/jcp.1030490205}}
* {{cite journal | last1 = Hastings | first1 = J.W. | last2 = Sweeney | first2 = B.M. | year = 1957 | title = The luminescent reaction in extracts of the marine dinoflagellate ''Gonyaulax polyedra'' | journal = J. Cell. Comp. Physiol. | volume = 49 | issue = 2| pages = 209–226 | doi=10.1002/jcp.1030490205| pmid = 13481063 }}
* {{cite journal | last1 = Sweeney | first1 = B.M. | last2 = Hastings | first2 = J.W. | year = 1957 | title = Characteristics of the diurnal rhythm of luminescence in ''Gonyaulax polyedra'' | url = | journal = J. Cell. And Comp. Physiol | volume = 49 | issue = | pages = 115–128 | doi=10.1002/jcp.1030490107}}
* {{cite journal | last1 = Sweeney | first1 = B.M. | last2 = Hastings | first2 = J.W. | year = 1957 | title = Characteristics of the diurnal rhythm of luminescence in ''Gonyaulax polyedra'' | journal = J. Cell. Comp. Physiol. | volume = 49 | pages = 115–128 | doi=10.1002/jcp.1030490107}}
* {{cite journal | last1 = McElroy | first1 = W.D. | last2 = Hastings | first2 = J.W. | last3 = Sonnenfeld | first3 = V. | last4 = Coulombre | first4 = J. | year = 1953 | title = The requirement of riboflavin-phosphate for bacterial luminescence | url = | journal = Science | volume = 118 | issue = 3066| pages = 385–386 | doi=10.1126/science.118.3066.385}}
* {{cite journal | last1 = McElroy | first1 = W.D. | last2 = Hastings | first2 = J.W. | last3 = Sonnenfeld | first3 = V. | last4 = Coulombre | first4 = J. | year = 1953 | title = The requirement of riboflavin-phosphate for bacterial luminescence | journal = Science | volume = 118 | issue = 3066| pages = 385–386 | doi=10.1126/science.118.3066.385| pmid = 13101761 | bibcode = 1953Sci...118..385M }}
* {{cite journal | last1 = Hastings | first1 = J.W. | last2 = McElroy | first2 = W.D. | last3 = Coulombre | first3 = J. | year = 1953 | title = The effect of oxygen upon the immobilization reaction in firefly luminescence | url = | journal = J. Cell and Comp. Physiol | volume = 42 | issue = | pages = 137–150 | doi=10.1002/jcp.1030420109}}
* {{cite journal | last1 = Hastings | first1 = J.W. | last2 = McElroy | first2 = W.D. | last3 = Coulombre | first3 = J. | year = 1953 | title = The effect of oxygen upon the immobilization reaction in firefly luminescence | journal = J. Cell. Comp. Physiol. | volume = 42 | issue = 1| pages = 137–150 | doi=10.1002/jcp.1030420109| pmid = 13084711 }}
* {{cite journal | last1 = Hastings | first1 = J.W. | year = 1952b | title = Oxygen concentration and bioluminescence intensity II: ''Cypridina hilgendorfii'' | url = | journal = J. Cell. And Comp. Physiol | volume = 40 | issue = | pages = 1–9 | doi=10.1002/jcp.1030400102}}
* {{cite journal | last1 = Hastings | first1 = J.W. | year = 1952b | title = Oxygen concentration and bioluminescence intensity II: ''Cypridina hilgendorfii'' | journal = J. Cell. Comp. Physiol. | volume = 40 | issue = 1| pages = 1–9 | doi=10.1002/jcp.1030400102| pmid = 12981130 }}
* {{cite journal | last1 = Hastings | first1 = J.W. | year = 1952a | title = Oxygen concentration and bioluminescence intensity. I: Bacteria and fungi | url = | journal = J. Cell and Comp. Physiol | volume = 39 | issue = | pages = 1–30 | doi=10.1002/jcp.1030390102}}
* {{cite journal | last1 = Hastings | first1 = J.W. | year = 1952a | title = Oxygen concentration and bioluminescence intensity. I: Bacteria and fungi | journal = J. Cell. Comp. Physiol. | volume = 39 | issue = 1| pages = 1–30 | doi=10.1002/jcp.1030390102| pmid = 14907815 }}


==References==
==References==
{{Reflist|2}}
{{Reflist|2}}

==External links==
* [http://www.pnas.org/content/104/3/693.full.pdf/ National Academy of Sciences profile of Professor J. Woodland Hastings]


{{Authority control}}
{{Authority control}}
Line 134: Line 133:
[[Category:2014 deaths]]
[[Category:2014 deaths]]
[[Category:Members of the United States National Academy of Sciences]]
[[Category:Members of the United States National Academy of Sciences]]
[[Category:Guggenheim Fellows]]
[[Category:V-12 Navy College Training Program]]
[[Category:Deaths from pulmonary fibrosis]]
[[Category:Deaths from pulmonary fibrosis]]
[[Category:People from Seaford, Delaware]]
[[Category:People from Seaford, Delaware]]

Latest revision as of 16:24, 7 August 2023

John Woodland Hastings
Born(1927-03-24)March 24, 1927
DiedAugust 6, 2014(2014-08-06) (aged 87)
NationalityAmerican
CitizenshipUnited States
Alma materSwarthmore College, 1944-1947; BA 1947 (Navy V-12 medical officers training program)

Princeton University, 1948-1951; M.A. 1950, PhD. 1951

Johns Hopkins University, 1951-1953 Postdoctoral Fellow
Known forFounding circadian biology
AwardsNATO Senior Fellow in Science, Foundation Curie, Orsay, France, 1977
Scientific career
FieldsBioluminescence, Circadian rhythms
InstitutionsInstructor in Biological Sciences Northwestern University 1953-1957

Assistant Professor of Biochemistry University of Illinois 1957-1966 Professor of Biology Harvard University, 1966-1986;

Paul C. Mangelsdorf Professor of Natural Sciences Harvard University 1986 - 2014
ThesisOxygen concentration and bioluminescence intensity (1951)
Doctoral advisorE. Newton Harvey
Other academic advisorsWilliam D. McElroy

John Woodland "Woody" Hastings, (March 24, 1927 – August 6, 2014) was a leader in the field of photobiology, especially bioluminescence, and was one of the founders of the field of circadian biology (the study of circadian rhythms, or the sleep-wake cycle).[2] He was the Paul C. Mangelsdorf Professor of Natural Sciences and Professor of Molecular and Cellular Biology at Harvard University.[3][4][5] He published over 400 papers and co-edited three books.[5]

Hastings research on bioluminescence principally focused on bacterial luminescence (over 150 papers) and dinoflagellates (over 80 papers).[5] In addition to bacteria and dinoflagellates, he, with his students and colleagues, also published papers on the biochemical and molecular mechanisms of light production in fungi, cnidarians, ctenophores, polychaetes, insects (fireflies and dipterans), ostracod crustaceans, millipedes, tunicates, and fishes with bacterial light organs. His laboratory produced the first evidence for quorum sensing in bacteria,[6] early evidence of the molecular mechanisms of circadian clock regulation in organisms (first using dinoflagellate luminescence and then expanded to other cellular proteins),[2][7][8] and some of the initial studies of energy transfer in green fluorescent proteins (GFP) in cnidarian luminescence.[9][10]

Early life[edit]

Hastings lived in Seaford, Delaware, during his early childhood; in 1937, he joined the choir at the Cathedral of St. John the Divine and attended the choir's in-house boarding school, visiting his family during vacations. Hastings moved to Lenox School in Lenox, Massachusetts, in 1941 to complete his secondary education and was interested in literature, physics, mathematics, ice hockey and basketball.[11]

Awards and honors[edit]

Throughout his career Hastings received numerous awards and honors:

Career[edit]

Hastings began his graduate studies at Princeton University in 1948 in the laboratory of E. Newton Harvey, the world leader of luminescence studies at the time, and focused on the role of oxygen in the luminescence of bacteria, fireflies, ostracod crustaceans and fungi. He received his PhD in 1951.[12] He then joined the lab of William D. McElroy, another student of Harvey’s, at Johns Hopkins University where he discovered both the stimulatory effects of coenzyme A and gating control by oxygen of firefly luminescence, and that flavin is a substrate in bacterial luminescence.

In 1953 he joined the faculty in the Department of Biological Sciences at Northwestern University. In 1954 he began a long collaboration with Beatrice M. Sweeney, who was then at the Scripps Institution of Oceanography, in elucidating the cellular and biochemical mechanisms of luminescence in the unicellular dinoflagellate Lingulodinium polyedrum (formerly known as Gonyaulax polyedra). A byproduct of this initial research was their discovery of circadian control of the luminescence.

In 1957, Hastings next took a faculty position in the Biochemistry Division of the Chemistry Department at the University of Illinois at Urbana–Champaign where he continued his focus on dinoflagellate and bacterial luminescence and dinoflagellate circadian rhythms. Hastings joined the faculty of Harvard University as Professor of Biology in 1966. During this period he continued and expanded his studies of circadian rhythms in dinoflagellates and luminescence in bacteria, dinoflagellates and other organisms. He was elected to the National Academy of Sciences in 2003[11] and received the Farrell Prize in Sleep Medicine for his work on circadian rhythms in 2006.[2][13]

For over 50 years he also had an affiliation with the Marine Biological Laboratory in Woods Hole, Massachusetts. He was the director of the Physiology Course there from 1962 to 1966, and served as a trustee from 1966 to 1970.

Research Interests[11][edit]

Luminescent Bacteria: Hastings' investigations of luminous bacteria acted as a catalyst for the discoveries of the biochemical mechanisms involved in their light production,[14] the discovery of a flavin to be a substrate in its luciferase reaction,[15] the determination of gene regulation of the luciferases, and the first evidence for quorum sensing,[16] a form of bacterial communication. In quorum sensing (initially termed autoinduction), the bacteria release a substance into the medium, the autoinducer. Once the concentration of this substance reaches a critical level (a measure of the number of bacteria in a limited area), transcription of specific other genes that had been repressed are turned on. Once the sequenced autoinducer gene was found to occur widely in gram-negative bacteria quorum sensing became accepted in the early 1990s. It is now known that in many pathogenic bacteria, there is delayed production of toxins, which serve to greatly augment their pathogenicity, this is similar to what happens for luciferase proteins. By curtailing their toxin output until the bacterial populations are substantial, these bacteria can generate massive quantities of toxin quickly and thereby swamp the defences of the host.

Luminescent Dinoflagellates: In early 1954 at Northwestern University, Hastings, his students and colleagues studied cellular and molecular aspects of bioluminescence in dinoflagellates [especially Lingulodinium polyedrum (formerly Gonyaulax polyedra)]. They elucidated the structures of the luciferins and luciferases,[17] the organization and regulation of their associated genes, temporal control mechanisms,[18] and the actual sub-cellular identity and location of the light emitting elements, which they termed scintillons.[19] They demonstrated that the reaction is controlled by a drop in pH when an action potential leads to the entry of protons via voltage-activated membrane channels in the scintillons.[20] Through immunolocalization studies the Hastings lab showed that scintillons are small peripheral vesicles (0.4 μm) that contain both the luciferase and the luciferin-binding protein.[21] More recently, the lab found that the luciferase gene in Lingulodinium polyedrum and other closely related species contains three homologous and contiguous repeated sequences in a kind of "three-ring circus with the same act in all three."[22] However, another luminescent, but heterotrophic, dinoflagellate, Noctiluca scintillans, has but a single protein, which appears to possess both catalytic and substrate binding properties in a single, rather than separate proteins.

Dinoflagellate Circadian Rhythms: Using Lingulodinium polyedrum as a model, Hastings spearheaded our understanding of the molecular mechanisms involved in control of circadian rhythms,[23] which in humans are involved in sleep, jet-lag and other daily activities. His lab has shown that the rhythm of bioluminescence involves a daily synthesis and destruction of proteins.[24] Because the mRNAs that code for these proteins remain unchanged from day to night, the synthesis of these proteins is controlled at the translational level.[25] This work has now been expanded to other proteins in the cell. On the other hand, short pulses of inhibitors of synthesis of these proteins results in phase shifts of the circadian rhythm, either delays or advances, depending when the pulse is administered.[26] At still another level, protein phosphorylation inhibitors also influence the period of the rhythm.[27]

Other luminescent systems: Early in his career Hastings developed techniques to quantify the level of oxygen required in a luminescent reaction for several different species including bacteria, fungi, fireflies and ostracod crustaceans.[28] This work showed that oxygen gating is the mechanism for firefly flashing.[29] In other work when he was in the McElroy lab he examined the basic biochemical mechanism of firefly luciferase and demonstrated that coenzyme A stimulates light emission.[30] His lab first demonstrated that the green in vivo coelenterate bioluminescence occurs because of energy transfer from the luminescent molecule (aequorin), which alone emits blue light, to a secondary green emitter which they termed green fluorescent protein (GFP).[9] Once characterized and cloned, GFP has become a crucial molecule used as a reporter and tagging tool for studying gene activation and developmental patterns.[10] Osamu Shimomura, Martin Chalfie and Roger Tsien received the Nobel Prize in Chemistry in 2008 for their work on this remarkable molecule.

Death[edit]

Hastings died of pulmonary fibrosis on August 6, 2014, at Lexington, Massachusetts.[1]

Publications[edit]

Selected publications:

References[edit]

  1. ^ a b Slotnik, Daniel E. (August 9, 2014). "J. W. Hastings, 87, a Pioneer in Bioluminescence Research, Dies". New York Times. Retrieved August 3, 2016.
  2. ^ a b c "2006 Farrell Prize recipient J. Woodland Hastings | Division of Sleep Medicine @ Harvard". Sleep.med.harvard.edu. Retrieved June 17, 2011.
  3. ^ "Faculty Profile: J. Woodland Hastings, PhD | Division of Sleep Medicine @ Harvard Medical School". Sleep.med.harvard.edu. Retrieved June 17, 2011.
  4. ^ Hastings Lab Home page Archived November 26, 2009, at the Wayback Machine
  5. ^ a b c "Hastings Lab: J. Woodland Hastings". Mcb.harvard.edu. Archived from the original on July 17, 2011. Retrieved June 17, 2011.
  6. ^ Hastings, J.W. and Greenberg, E.P. (1999)
  7. ^ Sweeney, B.M. and Hastings, J.W. (1957)
  8. ^ Hastings, J.W. (2007)
  9. ^ a b Morin, J.G. and Hastings, J.W. (1971)
  10. ^ a b Hastings, J.W. and Morin, J.G. (2006)
  11. ^ a b c Davis, Tinsley H. (January 16, 2007). "Profile of J. Woodland Hastings". Proceedings of the National Academy of Sciences. 104 (3): 693–695. Bibcode:2007PNAS..104..693D. doi:10.1073/pnas.0610519104. PMC 1783375. PMID 17215362.
  12. ^ Hastings, John W. (1951). Oxygen concentration and bioluminescence intensity (Ph.D.). Princeton University. OCLC 80712719. ProQuest 302031068.
  13. ^ Dept of MCB, Harvard U: News and Events - MCB News Archived October 30, 2006, at the Wayback Machine
  14. ^ Nealson, K., Platt, T. and Hastings, J.W. (1970)
  15. ^ Hastings, J.W. and Gibson, Q.H. (1963)
  16. ^ Nealson, K., Platt, T. and Hastings, J.W. (1970), Hastings, J.W. and Greenberg, E.P. (1999)
  17. ^ Hastings, J.W. and Sweeney, B.M. (1957), Sweeney, B.M. and Hastings, J.W. (1957)
  18. ^ Fogel, M. and Hastings, J.W. (1972), McMurry, L. and Hastings, J.W. (1972)
  19. ^ DeSa, R.J., Hastings, J.W. and Vatter, A.E. (1963), Nicolas, M-T., Nicolas, G., Johnson, C.H., Bassot, J-M. and Hastings, J.W. (1987)
  20. ^ Krieger, N. and Hastings, J.W. (1968)
  21. ^ Nicolas, M-T., Nicolas, G., Johnson, C.H., Bassot, J-M. and Hastings, J.W. (1987)
  22. ^ Liu, L., Wilson, T. and Hastings, J.W. (2004)
  23. ^ Bode, V.C., DeSa, R.J. and Hastings, J.W. (1963), McMurry, L. and Hastings, J.W. (1972)
  24. ^ Dunlap, J. and Hastings, J.W. (1981)
  25. ^ Morse, D., Milos, P.M., Roux, E., and Hastings, J.W. (1989), Hastings, J.W. (2007)
  26. ^ Taylor, W.R., Dunlap, J.C., Hastings, J.W. (1982)
  27. ^ Comolli, J. and Hastings J. W. (1999)
  28. ^ Hastings, J.W. (1952a, 1952b)
  29. ^ Hastings, J.W., McElroy, W.D. and Coulombre, J. (1953)
  30. ^ McElroy, W.D., Hastings, J.W., Sonnenfeld, V. and Coulombre, J. (1953)