Respiratory system

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 67.166.196.80 (talk) at 18:11, 12 September 2008. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

A complete, schematic view of the human respiratory system.

In living organisms, a respiratory system functions to allow gas exchange. The gases that are exchanged, the anatomy or structure of the exchange system, and the precise physiological uses of the exchanged gases vary depending on the organism. In humans and other mammals, for example, the anatomical features of the respiratory system include airways, lungs, and the respiratory muscles. Molecules of oxygen and carbon dioxide are passively exchanged, by diffusion, between this is the shiz man the gaseous external environment and the blood. forget this maaaanalveolar region of the lungs. [1]

Other animals, such as insects, have respiratory systems with very simple anatomical features, and in amphibians even the skin plays a vital role in gas exchange. Plants also have respiratory systems but the directionality of gas exchange can be opposite to that in animals. The respiratory system in plants also includes unique anatomical features such as holes on the undersides of leaves known as stomata.


Anatomy of Respiratory System in Vertebrates

Humans and Mammals

In humans and mammals, the respiratory system can be subdivided into an upper respiratory tract and a lower respiratory tract based on anatomical features. The upper respiratory tract includes the nasal passages, pharynx and the larynx. The lower respiratory tract is composed of the trachea, the primary bronchi and lungs. The respiratory system can also be divided into physiological, or functional, zones. These include the conducting zone (the region for gas transport from the outside atmosphere to just above the alveoli), the transitional zone, and the respiratory zone (the alveolar region where gas exchange occurs). (See also respiratory tract.)

Unique Aspects of Comparative Anatomy/Physiology in Mammals

Marine mammals

Horses

Horses are obligate nasal breathers and are different from many other mammals in that they do not have the option of breathing through their mouths. That is, they must take in air through their nose.

The horses respiratory system is divided into two sections, the upper respiratory tract and the lower respiratory tract. The upper respiratory tract is comprised of the nostrils, the nasal passages, pharynx, larynx and the trachea. The lower respiratory tract is made up of the bronchi, bronchioles, alveoli, and the lungs.

Elephants

Rodents

Birds

See Avian respiratory system for a detailed description.

Reptiles

Amphibians

Fish

In most fish the respiration takes place through gills. (See also aquatic respiration.) Lungfish, however, do possess one or two lungs. The labyrinth fishes have developed a special organ that allows them to take advantage of the oxygen of the air, but is not a true lung.

Anatomy of Respiratory System in Invertebrates

spam removed

Physiology of Respiratory System in Animals

For more detailed descriptions see also Respiratory physiology or Respiration.

Ventilation

Ventilation of the lungs is carried out by the muscles of respiration.

Control

Ventilation occurs under the control of the autonomic nervous system from parts of the brain stem, the medulla oblongata and the pons. This area of the brain forms the respiration regulatory center, a series of interconnected brain cells within the lower and middle brain stem which coordinate respiratory movements. The sections are the pneumotaxic center, the apneustic center, and the dorsal and ventral respiratory groups. This section is especially sensitive during infancy, and the neurons can be destroyed if the infant is dropped and/or shaken violently. The result can be death due to "shaken baby syndrome."[2]

Inhalation is initiated by the diaphragm and supported by the external intercostal muscles. Normal resting respirations are 10 to 18 breaths per minute. Its time period is 2 seconds. During vigorous inhalation (at rates exceeding 35 breaths per minute), or in approaching respiratory failure, accessory muscles of respiration are recruited for support. These consist of sternocleidomastoid, platysma, and the scalene muscles of the neck.

Inhalation is driven primarily by the diaphragm. When the diaphragm contracts, the ribcage expands and the contents of the abdomen are moved downward. This results in a larger thoracic volume, which in turn causes a decrease in intrathoracic pressure. As the pressure in the chest falls, air moves into the conducting zone. Here, the air is filtered, warmed, and humidified as it flows to the lungs.

During forced inhalation, as when taking a deep breath, the external intercostal muscles and accessory muscles further expand the thoracic cavity.

Exhalation

Exhalation is generally a passive process; however, active or forced exhalation is achieved by the abdominal and the internal intercostal muscles. During this process air is forced or exhaled out.

The lungs have a natural elasticity; as they recoil from the stretch of inhalation, air flows back out until the pressures in the chest and the atmosphere reach equilibrium.[3]

During forced exhalation, as when blowing out a candle, expiratory muscles including the abdominal muscles and internal intercostal muscles, generate abdominal and thoracic pressure, which forces air out of the lungs.

Circulation

The right side of the heart pumps blood from the right ventricle through the pulmonary semilunar valve into the pulmonary trunk. The trunk branches into right and left pulmonary arteries to the pulmonary blood vessels. The vessels generally accompany the airways and also undergo numerous branchings. Once the gas exchange process is complete in the pulmonary capillaries, blood is returned to the left side of the heart through four pulmonary veins, two from each side. The pulmonary circulation has a very low resistance, due to the short distance within the lungs, compared to the systemic circulation, and for this reason, all the pressures within the pulmonary blood vessels are normally low as compared to the pressure of the systemic circulation loop.

Virtually all the body's blood travels through the lungs every minute. The lungs add and remove many chemical messengers from the blood as it flows through pulmonary capillary bed. The fine capillaries also trap blood clots that have formed in systemic veins.

Gas exchange

The major function of the respiratory system is gas exchange between the external environment and an organism's circulatory system. In humans and mammals, this exchange facilitates oxygenation of the blood with a concomitant removal of carbon dioxide and other gaseous metabolic wastes from the circulation. As gas exchange occurs, the acid-base balance of the body is maintained as part of homeostasis. If proper ventilation is not maintained, two opposing conditions could occur: 1) respiratory acidosis, a life threatening condition, and 2) respiratory alkalosis.

Upon inhalation, gas exchange occurs at the alveoli, the tiny sacs which are the basic functional component of the lungs. The alveolar walls are extremely thin (approx. 0.2 micrometres). These walls are composed of a single layer of epithelial cells (type I and type II epithelial cells) in close proximity to the pulmonary capillaries which are composed of a single layer of endothelial cells. The close proximity of these two cell types allows permeability to gases and, hence, gas exchange.

Non-respiratory Functions

Vocalization

The movement of gas through the larynx, pharynx and mouth allows humans to speak, or phonate. Because of this, gas movement is extremely vital for communication purposes.

Temperature control

Panting in dogs

Coughing and sneezing

The phlegm is removed from the body by coughing, and sneezing.

Development of Respiratory System in Animals

Humans and Mammals

The respiratory system lies dormant in the human fetus during pregnancy. At birth, the respiratory system has under-developed lungs. This is due to the incomplete development of the alveoli type II cells in the lungs, necessary for the production of surfactant. The infant lungs do not function due to collapse of alveoli caused by surface tension of water remaining in the lungs, which in normal cases would be prohibited by the presence of surfactant. This condition may be avoided by giving the mother a series of steroid shots in the final week prior to delivery, which will have weard the development of type II alveolar cells.[4]

Disease and the Respiratory System

Disorders of the respiratory system can be classified into four general areas:

The respiratory tract is constantly exposed to microbes due to the extensive surface area, which is why the respiratory system includes many mechanisms to defend itself and prevent pathogens from entering the body.

Disorders of the respiratory system are usually treated internally by a pulmonologist or respiratory physician.

Respiratory System in Plants

Gas exchange in plants

Plants use carbon dioxide gas in the process of photosynthesis, and then exhale oxygen gas, a waste product of photosynthesis. However, plants also sometimes respire as humans do, using oxygen and producing carbon dioxide.

Plant respiration is limited by the process of diffusion. Plants take in carbon dioxide through holes on the undersides of their leaves known as stomata (sing:stoma). However, most plants require little air.[citation needed] Most plants have relatively few living cells outside of their surface because air (which is required for metabolic content) can penetrate only skin deep. However, most plants are not involved in highly aerobic activities, and thus have no need of these living cells.

See also

References

  • Perkins, M. 2003. Respiration Power Point Presentation. Biology 182 Course Handout. Orange Coast College, Costa Mesa, CA.
  • Medical Dictionary

Notes

  1. ^ Maton, Anthea (1995). Human Biology and Health. Englewood Cliffs, New Jersey: Prentice Hall. pp. 108–118. ISBN 0-12-981176-1. {{cite book}}: Check |isbn= value: checksum (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)
  2. ^ *Fact sheet on Shaken Baby Syndrome
  3. ^ A simple model of how the lungs are inflated can be built from a bell jar
  4. ^ Department of Environmental Biology, University of Adelaide, Adelaide, South Australia

External links