This is a collection of formulas  for the mathematical branch of logic  .
Logical values:
Extended logic:
Statements  can be linked by logical operators  , also called joiners  . The usual junctions are:
Surname
 
symbol
 
linguistic description
 
surgery
 
definition
 
 
Negator 
  
    
      
        ¬ 
       
     
    {\ displaystyle \ neg} 
   
 Not 
negation 
The negation of a logical value is true if and only if the value is false.
 
 
Conjunctor 
  
    
      
        ∧ 
       
     
    {\ displaystyle \ land} 
   
 and 
conjunction 
The conjunction of two values is true if and only if both values are true.
 
 
Disjunctor 
  
    
      
        ∨ 
       
     
    {\ displaystyle \ lor} 
   
 or 
Disjunction 
The disjunction of two values is true if and only if at least one value is true.
 
 
 
In order to be able to easily distinguish the symbols of the conjunctur and the disjunctor, there is the Eselsbrücke with the three O: "Or is Oben Offen." Alternatively, you can remember " A  nd" (English) for and, as well as " v  el" (Latin ) for or.
Linking two statements 
 
Surname
 
linguistic description
 
presentation
 
Truth table 
 
Logic gate 
 
 
by negator, conjunctor and disjunctor
 
through other junctions
 
A = 1
 
A = 0
 
 
B = 1
 
B = 0
 
B = 1
 
B = 0
 
 
conjunction A and B 
  
    
      
        A. 
        ∧ 
        B. 
       
     
    {\ displaystyle A \ land B} 
   
 
  
    
      
        ¬ 
        ( 
        B. 
        ⟹ 
        ¬ 
        A. 
        ) 
       
     
    {\ displaystyle \ neg (B \ implies \ neg A)} 
   
  
1 
0 
0 
0 
AND 
 
 
Exclusion, contrary contrast 
 
not A and B at the same time 
  
    
      
        ¬ 
        ( 
        A. 
        ∧ 
        B. 
        ) 
        ⟺ 
        ¬ 
        A. 
        ∨ 
        ¬ 
        B. 
       
     
    {\ displaystyle \ neg (A \ land B) \ iff \ neg A \ lor \ neg B} 
   
 
  
    
      
        A. 
        ∣ 
        B. 
        ⟺ 
        ( 
        A. 
        ⟹ 
        ¬ 
        B. 
        ) 
        ⟺ 
        ( 
        B. 
        ⟹ 
        ¬ 
        A. 
        ) 
       
     
    {\ displaystyle A \ mid B \ iff (A \ implies \ neg B) \ iff (B \ implies \ neg A)} 
   
 0 
1 
1 
1 
NAND 
 
 
Disjunction A or B (or both) 
  
    
      
        A. 
        ∨ 
        B. 
       
     
    {\ displaystyle A \ lor B} 
   
 
  
    
      
        ( 
        ¬ 
        A. 
        ⟹ 
        B. 
        ) 
        ⟺ 
        ( 
        ¬ 
        B. 
        ⟹ 
        A. 
        ) 
       
     
    {\ displaystyle (\ neg A \ implies B) \ iff (\ neg B \ implies A)} 
   
 1 
1 
1 
0 
OR 
 
 
Nihilition, Rejection 
neither a nor B 
  
    
      
        ¬ 
        ( 
        A. 
        ∨ 
        B. 
        ) 
        ⟺ 
        ¬ 
        A. 
        ∧ 
        ¬ 
        B. 
       
     
    {\ displaystyle \ neg (A \ lor B) \ iff \ neg A \ land \ neg B} 
   
 0 
0 
0 
1 
NOR 
 
 
Contravalence  , contradictory contrast 
 
either A or B 
  
    
      
        ( 
        A. 
        ∧ 
        ¬ 
        B. 
        ) 
        ∨ 
        ( 
        ¬ 
        A. 
        ∧ 
        B. 
        ) 
        ⟺ 
        ( 
        A. 
        ∨ 
        B. 
        ) 
        ∧ 
        ( 
        ¬ 
        A. 
        ∨ 
        ¬ 
        B. 
        ) 
       
     
    {\ displaystyle (A \ land \ neg B) \ lor (\ neg A \ land B) \ iff (A \ lor B) \ land (\ neg A \ lor \ neg B)} 
   
 
  
    
      
        A. 
        ⊻ 
        B. 
        ⟺ 
        ¬ 
        ( 
        A. 
        ⟺ 
        B. 
        ) 
       
     
    {\ displaystyle A \ veebar B \ iff \ neg (A \ iff B)} 
   
 0 
1 
1 
0 
XOR 
 
 
Biconditional  , Bisubjunktion, substantive equivalence 
only if A then B, then B if A 
  
    
      
        ( 
        A. 
        ∧ 
        B. 
        ) 
        ∨ 
        ( 
        ¬ 
        A. 
        ∧ 
        ¬ 
        B. 
        ) 
        ⟺ 
        ( 
        A. 
        ∨ 
        ¬ 
        B. 
        ) 
        ∧ 
        ( 
        ¬ 
        A. 
        ∨ 
        B. 
        ) 
       
     
    {\ displaystyle (A \ land B) \ lor (\ neg A \ land \ neg B) \ iff (A \ lor \ neg B) \ land (\ neg A \ lor B)} 
   
 
  
    
      
        ( 
        A. 
        ⟺ 
        B. 
        ) 
        ⟺ 
        ( 
        A. 
        ⟹ 
        B. 
        ) 
        ∧ 
        ( 
        B. 
        ⟹ 
        A. 
        ) 
       
     
    {\ displaystyle (A \ iff B) \ iff (A \ implies B) \ land (B \ implies A)} 
   
 1 
0 
0 
1 
XNOR 
 
 
Conditional, subjunction  , material implication 
implication 
if A then B 
  
    
      
        ¬ 
        A. 
        ∨ 
        B. 
       
     
    {\ displaystyle \ neg A \ lor B} 
   
 
  
    
      
        ( 
        A. 
        ⟹ 
        B. 
        ) 
        ⟺ 
        ( 
        ¬ 
        B. 
        ⟹ 
        ¬ 
        A. 
        ) 
       
     
    {\ displaystyle (A \ implies B) \ iff (\ neg B \ implies \ neg A)} 
   
 1 
0 
1 
1 
 
 
Replication 
if B then A 
  
    
      
        ¬ 
        B. 
        ∨ 
        A. 
       
     
    {\ displaystyle \ neg B \ lor A} 
   
 
  
    
      
        ( 
        B. 
        ⟹ 
        A. 
        ) 
        ⟺ 
        ( 
        ¬ 
        A. 
        ⟹ 
        ¬ 
        B. 
        ) 
       
     
    {\ displaystyle (B \ implies A) \ iff (\ neg A \ implies \ neg B)} 
   
 1 
1 
0 
1
 
 
Inhibition 
Mail section 
A and not B 
  
    
      
        A. 
        ∧ 
        ¬ 
        B. 
       
     
    {\ displaystyle A \ land \ neg B} 
   
 
  
    
      
        ¬ 
        ( 
        A. 
        ⟹ 
        B. 
        ) 
       
     
    {\ displaystyle \ neg (A \ implies B)} 
   
 0 
1 
0 
0 
 
 
Presection 
B and not A 
  
    
      
        B. 
        ∧ 
        ¬ 
        A. 
       
     
    {\ displaystyle B \ land \ neg A} 
   
 
  
    
      
        ¬ 
        ( 
        B. 
        ⟹ 
        A. 
        ) 
       
     
    {\ displaystyle \ neg (B \ implies A)} 
   
 0 
0 
1 
0
 
 
 
Basic logical laws 
Law of double negation 
 
  
    
      
        x 
        = 
        ¬ 
        ( 
        ¬ 
        x 
        ) 
       
     
    {\ displaystyle x = \ neg (\ neg x)} 
   
  
 
Commutative laws 
  
    
      
        x 
        ∧ 
        y 
        = 
        y 
        ∧ 
        x 
       
     
    {\ displaystyle x \ land y = y \ land x} 
   
 
  
    
      
        x 
        ∨ 
        y 
        = 
        y 
        ∨ 
        x 
       
     
    {\ displaystyle x \ lor y = y \ lor x} 
   
  
 
Associative Laws 
  
    
      
        x 
        ∧ 
        ( 
        y 
        ∧ 
        z 
        ) 
        = 
        ( 
        x 
        ∧ 
        y 
        ) 
        ∧ 
        z 
       
     
    {\ displaystyle x \ land (y \ land z) = (x \ land y) \ land z} 
   
 
  
    
      
        ( 
        x 
        ∨ 
        y 
        ) 
        ∨ 
        z 
        = 
        x 
        ∨ 
        ( 
        y 
        ∨ 
        z 
        ) 
       
     
    {\ displaystyle (x \ lor y) \ lor z = x \ lor (y \ lor z)} 
   
  
 
Distributive laws 
  
    
      
        x 
        ∧ 
        ( 
        y 
        ∨ 
        z 
        ) 
        = 
        ( 
        x 
        ∧ 
        y 
        ) 
        ∨ 
        ( 
        x 
        ∧ 
        z 
        ) 
       
     
    {\ displaystyle x \ land (y \ lor z) = (x \ land y) \ lor (x \ land z)} 
   
 
  
    
      
        x 
        ∨ 
        ( 
        y 
        ∧ 
        z 
        ) 
        = 
        ( 
        x 
        ∨ 
        y 
        ) 
        ∧ 
        ( 
        x 
        ∨ 
        z 
        ) 
       
     
    {\ displaystyle x \ lor (y \ land z) = (x \ lor y) \ land (x \ lor z)} 
   
  
 
Idempotence 
  
    
      
        x 
        ∧ 
        x 
        = 
        x 
       
     
    {\ displaystyle x \ land x = x} 
   
 
  
    
      
        x 
        ∨ 
        x 
        = 
        x 
       
     
    {\ displaystyle x \ lor x = x} 
   
  
 
Laws of negation  (tautology / contradiction) 
  
    
      
        x 
        ∨ 
        ¬ 
        x 
        = 
        1 
       
     
    {\ displaystyle x \ lor \ neg x = 1} 
   
 
  
    
      
        x 
        ∧ 
        ¬ 
        x 
        = 
        0 
       
     
    {\ displaystyle x \ land \ neg x = 0} 
   
  
 
Absorption laws 
  
    
      
        x 
        ∧ 
        ( 
        x 
        ∨ 
        y 
        ) 
        = 
        x 
       
     
    {\ displaystyle x \ land (x \ lor y) = x} 
   
 
  
    
      
        x 
        ∨ 
        ( 
        x 
        ∧ 
        y 
        ) 
        = 
        x 
       
     
    {\ displaystyle x \ lor (x \ land y) = x} 
   
  
 
neutrality 
  
    
      
        x 
        ∨ 
        0 
        = 
        x 
       
     
    {\ displaystyle x \ lor 0 = x} 
   
 
  
    
      
        x 
        ∧ 
        1 
        = 
        x 
       
     
    {\ displaystyle x \ land 1 = x} 
   
  
 
De Morgan's Laws 
  
    
      
        ¬ 
        ( 
        x 
        ∧ 
        y 
        ) 
        = 
        ¬ 
        x 
        ∨ 
        ¬ 
        y 
       
     
    {\ displaystyle \ neg (x \ land y) = \ neg x \ lor \ neg y} 
   
 
  
    
      
        ¬ 
        ( 
        x 
        ∨ 
        y 
        ) 
        = 
        ¬ 
        x 
        ∧ 
        ¬ 
        y 
       
     
    {\ displaystyle \ neg (x \ lor y) = \ neg x \ land \ neg y} 
   
  
 
 
Modus ponens 
  
    
      
        ( 
        ( 
        a 
        → 
        b 
        ) 
        ∧ 
        a 
        ) 
        → 
        b 
       
     
    {\ displaystyle ((a \ rightarrow b) \ land a) \ rightarrow b} 
   
  
 
Mode maddening 
  
    
      
        ( 
        ( 
        a 
        → 
        b 
        ) 
        ∧ 
        ¬ 
        b 
        ) 
        → 
        ¬ 
        a 
       
     
    {\ displaystyle ((a \ rightarrow b) \ land \ neg b) \ rightarrow \ neg a} 
   
  
 
Hypothetical syllogism 
 
  
    
      
        ( 
        a 
        → 
        b 
        ) 
        ∧ 
        ( 
        b 
        → 
        c 
        ) 
        → 
        ( 
        a 
        → 
        c 
        ) 
       
     
    {\ displaystyle (a \ rightarrow b) \ land (b \ rightarrow c) \ rightarrow (a \ rightarrow c)} 
   
  
 
Disjunctive syllogism 
  
    
      
        ( 
        ( 
        a 
        ∨ 
        b 
        ) 
        ∧ 
        ¬ 
        a 
        ) 
        → 
        b 
       
     
    {\ displaystyle ((a \ lor b) \ land \ neg a) \ rightarrow b} 
   
  
 
 
Predicate logic 
 
p is a placeholder for a predicate logic proposition.
  
    
      
        
          ∀ 
          
            x 
           
         
        p 
        = 
        ¬ 
        ( 
        
          ∃ 
          
            x 
           
         
        ¬ 
        p 
        ) 
       
     
    {\ displaystyle \ forall _ {x} p = \ neg (\ exists _ {x} \ neg p)} 
   
  
  
    
      
        
          ∃ 
          
            x 
           
         
        p 
        = 
        ¬ 
        ( 
        
          ∀ 
          
            x 
           
         
        ¬ 
        p 
        ) 
       
     
    {\ displaystyle \ exists _ {x} p = \ neg (\ forall _ {x} \ neg p)} 
   
  
 
  
    
      
        ¬ 
        
          ∀ 
          
            x 
           
         
        p 
        = 
        ( 
        
          ∃ 
          
            x 
           
         
        ¬ 
        p 
        ) 
       
     
    {\ displaystyle \ neg \ forall _ {x} p = (\ exists _ {x} \ neg p)} 
   
  
  
    
      
        ¬ 
        
          ∃ 
          
            x 
           
         
        p 
        = 
        ( 
        
          ∀ 
          
            x 
           
         
        ¬ 
        p 
        ) 
       
     
    {\ displaystyle \ neg \ exists _ {x} p = (\ forall _ {x} \ neg p)} 
   
  
 
 
  
    
      
        ϕ 
       
     
    {\ displaystyle \ phi} 
   
 
  
    
      
        ψ 
       
     
    {\ displaystyle \ psi} 
   
 
  
    
      
        ψ 
       
     
    {\ displaystyle \ psi} 
   
 
  
    
      
        ϕ 
       
     
    {\ displaystyle \ phi} 
   
 
This is not a problem if the variables are named differently in the statement forms and in each case.
  
    
      
        ϕ 
       
     
    {\ displaystyle \ phi} 
   
 
  
    
      
        ψ 
       
     
    {\ displaystyle \ psi} 
   
 
  
    
      
        ( 
        ∀ 
        x 
        ϕ 
        ) 
        ∧ 
        ψ 
       
     
    {\ displaystyle (\ forall x \ phi) \ land \ psi} 
   
 
  
    
      
        ∀ 
        x 
        ( 
        ϕ 
        ∧ 
        ψ 
        ) 
       
     
    {\ displaystyle \ forall x (\ phi \ land \ psi)} 
   
  
  
    
      
        ( 
        ∀ 
        x 
        ϕ 
        ) 
        ∨ 
        ψ 
       
     
    {\ displaystyle (\ forall x \ phi) \ lor \ psi} 
   
 
  
    
      
        ∀ 
        x 
        ( 
        ϕ 
        ∨ 
        ψ 
        ) 
       
     
    {\ displaystyle \ forall x (\ phi \ lor \ psi)} 
   
  
 
  
    
      
        ( 
        ∃ 
        x 
        ϕ 
        ) 
        ∧ 
        ψ 
       
     
    {\ displaystyle (\ exists x \ phi) \ land \ psi} 
   
 
  
    
      
        ∃ 
        x 
        ( 
        ϕ 
        ∧ 
        ψ 
        ) 
       
     
    {\ displaystyle \ exists x (\ phi \ land \ psi)} 
   
  
  
    
      
        ( 
        ∃ 
        x 
        ϕ 
        ) 
        ∨ 
        ψ 
       
     
    {\ displaystyle (\ exists x \ phi) \ lor \ psi} 
   
 
  
    
      
        ∃ 
        x 
        ( 
        ϕ 
        ∨ 
        ψ 
        ) 
       
     
    {\ displaystyle \ exists x (\ phi \ lor \ psi)} 
   
  
 
  
    
      
        ¬ 
        ∃ 
        x 
        ϕ 
       
     
    {\ displaystyle \ lnot \ exists x \ phi} 
   
 
  
    
      
        ∀ 
        x 
        ¬ 
        ϕ 
       
     
    {\ displaystyle \ forall x \ lnot \ phi} 
   
  
  
    
      
        ¬ 
        ∀ 
        x 
        ϕ 
       
     
    {\ displaystyle \ lnot \ forall x \ phi} 
   
 
  
    
      
        ∃ 
        x 
        ¬ 
        ϕ 
       
     
    {\ displaystyle \ exists x \ lnot \ phi} 
   
  
 
  
    
      
        ( 
        ∀ 
        x 
        ϕ 
        ) 
        → 
        ψ 
       
     
    {\ displaystyle (\ forall x \ phi) \ rightarrow \ psi} 
   
 
  
    
      
        ∃ 
        x 
        ( 
        ϕ 
        → 
        ψ 
        ) 
       
     
    {\ displaystyle \ exists x (\ phi \ rightarrow \ psi)} 
   
  
  
    
      
        ( 
        ∃ 
        x 
        ϕ 
        ) 
        → 
        ψ 
       
     
    {\ displaystyle (\ exists x \ phi) \ rightarrow \ psi} 
   
 
  
    
      
        ∀ 
        x 
        ( 
        ϕ 
        → 
        ψ 
        ) 
       
     
    {\ displaystyle \ forall x (\ phi \ rightarrow \ psi)} 
   
  
 
  
    
      
        ϕ 
        → 
        ( 
        ∃ 
        x 
        ψ 
        ) 
       
     
    {\ displaystyle \ phi \ rightarrow (\ exists x \ psi)} 
   
 
  
    
      
        ∃ 
        x 
        ( 
        ϕ 
        → 
        ψ 
        ) 
       
     
    {\ displaystyle \ exists x (\ phi \ rightarrow \ psi)} 
   
  
  
    
      
        ϕ 
        → 
        ( 
        ∀ 
        x 
        ψ 
        ) 
       
     
    {\ displaystyle \ phi \ rightarrow (\ forall x \ psi)} 
   
 
  
    
      
        ∀ 
        x 
        ( 
        ϕ 
        → 
        ψ 
        ) 
       
     
    {\ displaystyle \ forall x (\ phi \ rightarrow \ psi)} 
   
  
 
 
Minimum final rules Quasi order 
  
    
      
        ⊢ 
       
     
    {\ displaystyle \ vdash} 
   
 
  
    
      
        
          
            
              
                
                    
                 
               
             
            
              
                A. 
                ⊢ 
                A. 
               
             
           
         
        
          
            
              
                A. 
                ⊢ 
                B. 
                B. 
                ⊢ 
                C. 
               
             
            
              
                A. 
                ⊢ 
                C. 
               
             
           
         
       
     
    {\ displaystyle {\ begin {array} {c} {~} \\\ hline A \ vdash A \ end {array}} \ qquad {\ begin {array} {c} A \ vdash B \ qquad B \ vdash C \\\ hline A \ vdash C \ end {array}}} 
   
 
conjunction 
  
    
      
        ⊤ 
       
     
    {\ displaystyle \ top} 
   
 
  
    
      
        ∧ 
       
     
    {\ displaystyle \ land} 
   
 
  
    
      
        
          
            
              
                
                    
                 
               
             
            
              
                A. 
                ⊢ 
                ⊤ 
               
             
           
         
        
          
            
              
                A. 
                ⊢ 
                B. 
                A. 
                ⊢ 
                C. 
               
             
            
              
                A. 
                ⊢ 
                B. 
                ∧ 
                C. 
               
             
           
         
        
          ↑ 
         
        
          ↓ 
         
       
     
    {\ displaystyle {\ begin {array} {c} {~} \\\ hline A \ vdash \ top \ end {array}} \ qquad {\ begin {array} {c} A \ vdash B \ qquad A \ vdash C \\\ hline A \ vdash B \ land C \ end {array}} {\ uparrow} {\ downarrow}} 
   
 
Disjunction 
  
    
      
        ⊥ 
       
     
    {\ displaystyle \ bot} 
   
 
  
    
      
        ∨ 
       
     
    {\ displaystyle \ lor} 
   
 
  
    
      
        
          
            
              
                
                    
                 
               
             
            
              
                ⊥ 
                ⊢ 
                A. 
               
             
           
         
        
          
            
              
                A. 
                ⊢ 
                C. 
                B. 
                ⊢ 
                C. 
               
             
            
              
                A. 
                ∨ 
                B. 
                ⊢ 
                C. 
               
             
           
         
        
          ↑ 
         
        
          ↓ 
         
       
     
    {\ displaystyle {\ begin {array} {c} {~} \\\ hline \ bot \ vdash A \ end {array}} \ qquad {\ begin {array} {c} A \ vdash C \ qquad B \ vdash C \\\ hline A \ lor B \ vdash C \ end {array}} {\ uparrow} {\ downarrow}} 
   
 
Heyting implication and negation 
  
    
      
        → 
       
     
    {\ displaystyle \ to} 
   
 
  
    
      
        
          
            
              
                A. 
                ∧ 
                B. 
               
              
                ⊢ 
               
              
                C. 
               
             
            
              
                A. 
               
              
                ⊢ 
               
              
                B. 
                → 
                C. 
               
             
           
         
        
          ↑ 
         
        
          ↓ 
         
       
     
    {\ displaystyle {\ begin {array} {lcr} A \ land B & \ vdash & C \\\ hline A & \ vdash & B \ to C \ end {array}} {\ uparrow} {\ downarrow}} 
   
 
defined, and per
 .
  
    
      
        ¬ 
       
     
    {\ displaystyle \ lnot} 
   
 
  
    
      
        ¬ 
        A. 
        : = 
        A. 
        → 
        ⊥ 
       
     
    {\ displaystyle \ lnot A: = A \ to \ bot} 
   
 
It apply
  
    
      
        A. 
        ∧ 
        ¬ 
        A. 
        ⊢ 
        ⊥ 
       
     
    {\ displaystyle A \ land \ lnot A \ vdash \ bot} 
   
  
  
    
      
        ¬ 
        ⊤ 
        ⊢ 
        ⊥ 
       
     
    {\ displaystyle \ lnot \ top \ vdash \ bot} 
   
  
  
    
      
        ⊤ 
        ⊢ 
        ¬ 
        ⊥ 
       
     
    {\ displaystyle \ top \ vdash \ lnot \ bot} 
   
  
 
Co-Heyting implication and negation Dual to and are and .
  
    
      
        → 
       
     
    {\ displaystyle \ to} 
   
 
  
    
      
        ¬ 
       
     
    {\ displaystyle \ lnot} 
   
 
  
    
      
        ∖ 
       
     
    {\ displaystyle \ setminus} 
   
 
  
    
      
        ∼ 
       
     
    {\ displaystyle \ sim} 
   
 
  
    
      
        
          
            
              
                A. 
                ∖ 
                B. 
               
              
                ⊢ 
               
              
                C. 
               
             
            
              
                A. 
               
              
                ⊢ 
               
              
                B. 
                ∨ 
                C. 
               
             
           
         
        
          ↑ 
         
        
          ↓ 
         
       
     
    {\ displaystyle {\ begin {array} {lcr} A \ setminus B & \ vdash & C \\\ hline A & \ vdash & B \ lor C \ end {array}} {\ uparrow} {\ downarrow}} 
   
 
  
    
      
        
          ∼ 
         
        A. 
        : = 
        ⊤ 
        ∖ 
        A. 
       
     
    {\ displaystyle {\ sim} A: = \ top \ setminus A} 
   
 
It apply
  
    
      
        ⊤ 
        ⊢ 
        A. 
        ∨ 
        
          ∼ 
         
        A. 
       
     
    {\ displaystyle \ top \ vdash A \ lor {\ sim} A} 
   
 
  
    
      
        
          ∼ 
         
        ⊤ 
        ⊢ 
        ⊥ 
       
     
    {\ displaystyle {\ sim} \ top \ vdash \ bot} 
   
  
  
    
      
        ⊤ 
        ⊢ 
        
          ∼ 
         
        ⊥ 
       
     
    {\ displaystyle \ top \ vdash {\ sim} \ bot} 
   
  
 
Relationship between the negations It always applies . This also applies if you get classic logic.
  
    
      
        ¬ 
        A. 
        ⊢ 
        
          ∼ 
         
        A. 
       
     
    {\ displaystyle \ lnot A \ vdash {\ sim} A} 
   
 
  
    
      
        
          ∼ 
         
        A. 
        ⊢ 
        ¬ 
        A. 
       
     
    {\ displaystyle {\ sim} A \ vdash \ lnot A} 
   
 
Quantifiers Let it be a picture. Any statement about elements of can be transformed into a statement about elements using. Notation: .
is a functor. Its right and left adjoint are, respectively, universal and existential quantifiers. Ie
  
    
      
        f 
        : 
        X 
        → 
        Y 
       
     
    {\ displaystyle f \ colon X \ to Y} 
   
 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        Y 
       
     
    {\ displaystyle Y} 
   
 
  
    
      
        f 
       
     
    {\ displaystyle f} 
   
 
  
    
      
        X 
       
     
    {\ displaystyle X} 
   
 
  
    
      
        A. 
        ∘ 
        f 
       
     
    {\ displaystyle A \ circ f} 
   
 
  
    
      
        ( 
        - 
        ∘ 
        f 
        ) 
       
     
    {\ displaystyle (- \ circ f)} 
   
 
  
    
      
        
          
            
              
                A. 
                ∘ 
                f 
               
              
                
                  ⊢ 
                  
                    X 
                   
                 
               
              
                B. 
               
             
            
              
                A. 
               
              
                
                  ⊢ 
                  
                    Y 
                   
                 
               
              
                
                  ∀ 
                  
                    f 
                   
                 
                B. 
               
             
           
         
        
          ↑ 
         
        
          ↓ 
         
        
          
            
              
                C. 
               
              
                
                  ⊢ 
                  
                    X 
                   
                 
               
              
                A. 
                ∘ 
                f 
               
             
            
              
                
                  ∃ 
                  
                    f 
                   
                 
                C. 
               
              
                
                  ⊢ 
                  
                    Y 
                   
                 
               
              
                A. 
               
             
           
         
        
          ↑ 
         
        
          ↓ 
         
       
     
    {\ displaystyle {\ begin {array} {lcr} A \ circ f & \ vdash _ {X} & B \\\ hline A & \ vdash _ {Y} & \ forall _ {f} B \ end {array}} {\ uparrow} {\ downarrow} \ qquad {\ begin {array} {rcl} C & \ vdash _ {X} & A \ circ f \\\ hline \ exists _ {f} C & \ vdash _ {Y} & A \ end {array }} {\ uparrow} {\ downarrow}} 
   
 
 
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">