Plasma sequencing

from Wikipedia, the free encyclopedia

The plasma sequencing (also plasma-Seq ) indicates methods for sequencing of the genome from the plasma of a blood sample.

principle

The Plasma-Seq is used to determine circulating free DNA , mostly in the context of diagnosing tumors . So-called next-generation methods of DNA sequencing are used. This is a non-invasive method for assessing the clonal evolution of the tumor genome. Plasma sequencing can reduce incorrect therapy decisions and optimize the treatment of tumors so that maximum effectiveness can be achieved with fewer side effects. Plasma sequencing is used in personalized medicine , as it enables the tumor genome to be monitored by taking regular blood samples.

Problem and application

For the treatment of tumors, such as colorectal carcinomas and prostate carcinomas , it is important to find out in advance that genome mutations of the tumor are found, as these can have a strong influence on the therapies . In the case of colorectal abnormalities with a KRAS mutation, for example, therapy with monoclonal antibodies that target the epidermal growth factor (EGFR) receptor does not work . The therapies are based on the initial diagnosis . It turns out, however, that the tumors can develop resistance after a few months of treatment for reasons that are still inexplicable . Since a tumor biopsy a very invasive procedure, there is the possibility of cell-free DNA (cfDNA, cell-free DNA) to analyze the plasma of cancer patients / inside. Cancer cells can release their tumor DNA into the bloodstream , this DNA is called ctDNA (circulating tumor DNA). It is part of the cfDNA. With the help of sequencing this DNA, genetic mutations can be identified.

Diagnosis

On the one hand, the method of plasma sequencing is used to reveal therapy-relevant mutations (this is only carried out in the plasma if no relevant tumor tissue is available), on the other hand, the ctDNA is useful to detect tumor-specific mutations in the blood as a biomarker for follow-up observations as well as tumor recurrence early detection. Plasma sequencing thus enables the identification of new mutations (e.g. KRAS , MET or ERBB2 ) in a tumor or can be of assistance in establishing a diagnosis. This enables personal and targeted therapy for the affected patients. Due to the instability of the tumor genome, the status of biomarkers that are important for stopping therapy can change. By reacting early to new mutations in the tumor, therapies can be changed and thus the progression of the disease can be prevented or delayed.

A disadvantage of plasma sequencing is that no specific statement can be made about the development of the tumor. A differentiation of the place of origin (the primary tumor tissue or the metastases ) has not yet been possible. This is due to the fact that the ctDNA can be derived from one or the other tumor.

execution

Plasma sequencing is next-generation sequencing . At the beginning, the DNA in the plasma sample is purified and isolated. The samples are then prepared for sequencing with bridge synthesis. The template DNA is fragmented and adapter sequences are attached to the DNA fragments so that they are bound to a glass slide . The sequencing takes place on this slide and, in a PCR- like step, clusters of identical molecules are formed in cycles. Exactly one fluorescence-labeled nucleotide is incorporated per cycle, complementary to the template DNA. The light signal from the fluorophore can be detected and processed and the next nucleotide is incorporated in the next cycle.

For an analysis you need a device for a sequencing, especially for a sequencing by synthesis. There is also the option of paired-end sequencing, which can increase the accuracy of the analysis. In this case the DNA fragments are sequenced from both sides.

With an instrument for whole genome sequencing with high throughput and a sequencing depth of 0.1-0.2x from a plasma sample, a genome-wide tumor profile including copy number variations can be created within two days at low cost.

Method comparison

There is also an option to check the tumor genome using circulating tumor cells (CTC). Circulating tumor cells are released into the bloodstream by primary and metastatic tumors and can then be isolated and characterized. The genotypes of the CTCs enable assessments of drug sensitivity and resistance and can be helpful in making therapy decisions. In addition, CTCs can provide information about the prognosis .

CTC analysis ctDNA analysis
Furnishing special devices for identification and of CTCs simple blood test
insulation complex isolation of CTCs no special isolation, but a standard DNA purification
Information on heterogeneity and clonality Yes, if enough cells have been analyzed No, the results reflect the average of the ctDNA from all tumor cells

literature

  • Evelyn Kidess, Stefanie S. Jeffrey: Circulating tumor cells versus tumor-derived cell-free DNA: rivals or partners in cancer care in the era of single-cell analysis? In: Genome Medicine . tape 5 , no. 8 , August 13, 2013, p. 70 , doi : 10.1186 / gm474 , PMID 23953663 .
  • Martina Auer, Ellen Heitzer, Peter Ulz, Jochen B Geigl, Michael R Speicher: Single circulating tumor cell sequencing for monitoring . In: Oncotarget . tape 4 , no. 6 , May 10, 2013, p. 812-813 , PMID 23868872 .
  • M. Zapatka, P. Lights: Modern techniques of genetic diagnosis . In: The gynecologist . tape 45 , no. 1 , January 12, 2012, p. 11-16 , doi : 10.1007 / s00129-011-2856-x .

Web links

References

  1. N. Navin, J. Kendall, J. Troge, P. Andrews, L. Rodgers, J. McIndoo, K. Cook, A. Stepansky, D. Levy, D. Esposito, L. Muthuswamy, A. Krasnitz, WR McCombie, J. Hicks, and M. Wigler: Tumor evolution inferred by single-cell sequencing. Nature, Vol. 472, No. 7341, pp. 90-4, Apr. 2011.
  2. a b c d e f g h i j k l m E. Heitzer, P. Ulz, J. Belic, S. Gutschi, F. Quehenberger, K. Fischereder, T. Benezeder, M. Auer, C. Pischler, S. Mannweiler, M. Pichler, F. Eisner, M. Haeusler, S. Riethdorf, K. Pantel, H. Samonigg , G. Hoefler, H. Augustin, JB Geigl, and MR Speicher: Tumor-associated copy number changes in the circulation of patients with prostate cancer identified through whole-genome sequencing. Genome Med., Volume 5, No. 4, p. Jan. 30, 2013.
  3. a b c d e f g h K. CA Chan, P. Jiang, YWL Zheng, GJW Liao, H. Sun, J. Wong, SSN Siu, WC Chan, SL Chan, ATC Chan, PBS Lai, RWK Chiu and YMD Lo: Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants and tumoral heterogeneity by massively parallel sequencing. Clin. Chem., Vol. 59, No. 1, pp. 211-24, Jan. 2013.
  4. a b R. J. Leary, M. Sausen, I. Kinde, N. Papadopoulos, JD Carpten, D. Craig, J. O'Shaughnessy, KW Kinzler, G. Parmigiani, B. Vogelstein, LA Diaz and VE Velculescu: Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci. Transl. Med., Volume 4, No. 162, p. 162ra154, Nov. 2012.
  5. a b c M. Murtaza, S.-J. Dawson, DWY Tsui, D. Gale, T. Forshew, AM Piskorz, C. Parkinson, S.-F. Chin, Z. Kingsbury, ASC Wong, F. Marass, S. Humphray, J. Hadfield, D. Bentley, TM Chin, JD Brenton, C. Caldas and N. Rosenfeld: Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature, Vol. 497, No. 7447, pp. 108-12, May 2013.
  6. a b c d e f g h i j S. Mohan, E. Heitzer, P. Ulz, I. Lafer, S. Lax, M. Auer, M. Pichler, A. Gerger, F. Eisner, G. Hoefler , T. Bauernhofer, JB Geigl and MR Speicher: Changes in colorectal carcinoma genomes under anti-EGFR therapy identified by whole-genome plasma DNA sequencing. PLoS Genet., Volume 10, No. 3, Page e1004271, Mar. 2014.
  7. a b c d e f g h i E. Heitzer, M. Auer, P. Ulz, JB Geigl and MR Speicher: Circulating tumor cells and DNA as liquid biopsies. Genome Med., Volume 5, No. 8, p. 73, Jan. 2013.
  8. CS Karapetis, S. Khambata-Ford, DJ Jonker, CJ O'Callaghan, D. Tu, NC Tebbutt, RJ Simes, H. Chalchal, JD Shapiro, S. Robitaille, TJ Price, L. Shepherd, H.-J . Au, C. Langer, MJ Moore and JR Zalcberg: K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med., Vol. 359, No. 17, pp. 1757-65, Oct. 2008.
  9. E. Van Cutsem, C.-H. Koehne, E. Hitre, J. Zaluski, C.-R. Chang Chien, A. Makhson, G. D'Haens, T. Pintér, R. Lim, G. Bodoky, JK Roh, G. Folprecht, P. Ruff, C. Stroh, S. Tejpar, M. Schlichting, J. Nippgen and P. Rougier: Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N. Engl. J. Med., Vol. 360, No. 14, pp. 1408-17, Apr. 2009.
  10. D. Cunningham, Y. Humblet, S. Siena, D. Khayat, H. Bleiberg, A. Santoro, D. Bets, M. Mueser, A. Harstrick, C. Verslype, I. Chau and E. Van Cutsem: Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med., Volume 351, No. 4, Pages 337-45, Jul. 2004.
  11. E. Van Cutsem, M. Peeters; S. Siena, Y. Humblet; A. Hendlisz; B. Neyns; J.-L. Canon; J.-L. Van Laethem; J. Maurel; G. Richardson; M. Wolf and RG Amado: Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J. Clin. Oncol., Vol. 25, No. 13, pp. 1658-64, May 2007.
  12. a b F. Diehl, M. Li, D. Dressman, Y. He, D. Shen, S. Szabo, LA Diaz, SN Goodman, KA David, H. Juhl, KW Kinzler and B. Vogelstein: Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc. Natl. Acad. Sci. USA, Vol. 102, No. 45, pp. 16368-73, Nov. 2005.
  13. a b F. Diehl, K. Schmidt, MA Choti, K. Romans, S. Goodman, M. Li, K. Thornton, N. Agrawal, L. Sokoll, SA Szabo, KW Kinzler, B. Vogelstein and LA Diaz : Circulating mutant DNA to assess tumor dynamics. Nat. Med., Vol. 14, No. 9, pp. 985-90, Sep. 2008.
  14. a b T. Forshew; M. Murtaza; C. Parkinson; D. Gale; DWY Tsui; F. Kaper; S.-J. Dawson; AM Piskorz; M. Jimenez-Linan; D. Bentley; J. Hadfield; AP May; C. Caldas; JD Brenton and N. Rosenfeld: Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci. Transl. Med., Volume 4, No. 136, Page 136ra68, May 2012.
  15. a b c E. Heitzer, M. Auer, EM Hoffmann, M. Pichler, C. Gasch, P. Ulz, S. Lax, J. Waldispuehl-Geigl, O. Mauermann, S. Mohan, G. Pristauz, C Lackner, G. Höfler, F. Eisner, E. Petru, H. Sill, H. Samonigg, K. Pantel, S. Riethdorf, T. Bauernhofer, JB Geigl and MR Speicher: Establishment of tumor-specific copy number alterations from plasma DNA of patients with cancer. Int. J. Cancer, Vol. 133, No. 2, pp. 346-56, Jul. 2013.
  16. a b RJ Leary, I. Kinde, F. Diehl, K. Schmidt, C. Clouser, C. Duncan, A. Antipova, C. Lee, K. McKernan, FM De La Vega, KW Kinzler, B. Vogelstein, LA Diaz and VE Velculescu: Development of personalized tumor biomarkers using massively parallel sequencing. Sci. Transl. Med., Volume 2, No. 20, p. 20ra14, Feb. 2010.
  17. a b DJ McBride, AK Orpana, C. Sotiriou, H. Joensuu, PJ Stephens, LJ Mudie, E. Hämäläinen, LA Stebbings, LC Andersson, AM Flanagan, V. Durbecq, M. Ignatiadis, O. Kallioniemi, CA Heckman , K. Alitalo, H. Edgren, PA Futreal, MR Stratton and PJ Campbell: Use of cancer-specific genomic rearrangements to quantify disease burden in plasma from patients with solid tumors. Genes. Chromosomes Cancer, vol. 49, No. 11, pp. 1062-9, Nov. 2010.
  18. H. Schwarzenbach, DSB Hoon and K. Pantel: Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer, Vol. 11, No. 6, pp. 426-37, June 2011.
  19. ^ A b E. Crowley, F. Di Nicolantonio, F. Loupakis and A. Bardelli: Liquid biopsy: monitoring cancer-genetics in the blood. Nat. Rev. Clin. Oncol., Volume 10, No. 8, Pages 472-84, Aug. 2013.
  20. LA Diaz, RT Williams, J. Wu, I. Kinde, JR Hecht, J. Berlin, B. Allen, I. Bozic, JG Reiter, MA Nowak, KW Kinzler, KS Oliner and B. Vogelstein The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature, Vol. 486, No. 7404, pp. 537-40, June 2012.
  21. S. Misale, R. Yaeger, S. Hobor, E. Scala, M. Janakiraman, D. Liska, E. Valtorta, R. Schiavo, M. Buscarino, G. Siravegna, K. Bencardino, A. Cercek, C .-T. Chen, S. Veronese, C. Zanon, A. Sartore-Bianchi, M. Gambacorta, M. Gallicchio, E. Vakiani, V. Boscaro, E. Medico, M. Weiser, S. Siena, F. Di Nicolantonio, D Solit and A. Bardelli: Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature, Vol. 486, No. 7404, pp. 532-6, June 2012.
  22. ^ W. De Roock, B. Claes, D. Bernasconi, J. De Schutter, B. Biesmans, G. Fountzilas, KT Kalogeras, V. Kotoula, D. Papamichael, P. Laurent-Puig, F. Penault-Llorca, P. Rougier, B. Vincenzi, D. Santini, G. Tonini, F. Cappuzzo, M. Frattini, F. Molinari, P. Saletti, S. De Dosso, M. Martini, A. Bardelli, S. Siena, A Sartore-Bianchi, J. Tabernero, T. Macarulla, F. Di Fiore, AO Gangloff, F. Ciardiello, P. Pfeiffer, C. Qvortrup, TP Hansen, E. Van Cutsem, H. Piessevaux, D. Lambrechts, M Delorenzi and S. Tejpar: Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet. Oncol., Vol. 11, No. 8, pp. 753-62, Aug. 2010.
  23. ^ NJ Loman, R. V Misra, TJ Dallman, C. Constantinidou, SE Gharbia, J. Wain, and MJ Pallen: Performance comparison of benchtop high-throughput sequencing platforms. Nat. Biotechnol., Volume 30, No. 5, Pages 434-9, May 2012.
  24. C. Alix Panabières and K. Pantel: Circulating tumor cells: liquid biopsy of cancer. Clin. Chem., Vol. 59, No. 1, Pages 110-8, Jan. 2013.
  25. ^ S. Maheswaran and DA Haber: Circulating tumor cells: a window into cancer biology and metastasis. Curr. Opin. Genet. Dev., Vol. 20, No. 1, pp. 96-9, Feb. 2010.
  26. M. Yu, S. Stott, M. Toner, S. Maheswaran, and DA Haber: Circulating tumor cells: approaches to isolation and characterization. J. Cell Biol., Vol. 192, No. 3, pp. 373-82, Feb. 2011.
  27. M. Cristofanilli, GT Budd, MJ Ellis, A. Stopeck, J. Matera, MC Miller, JM Reuben, G. V Doyle, WJ Allard, LWMM Terstappen, and DF Hayes: Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med., Vol. 351, No. 8, Pages 781-91, Aug. 2004.
  28. M. Cristofanilli, DF Hayes, GT Budd, MJ Ellis, A. Stopeck, JM Reuben, G. V Doyle, J. Matera, WJ Allard, MC Miller, HA Fritsche, GN Hortobagyi, and LWMM Terstappen: Circulating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancer., J. Clin. Oncol., Vol. 23, No. 7, pp. 1420-30, March 2005.
  29. WJ Allard, J. Matera, MC Miller, M. Repollet, MC Connelly, C. Rao, AGJ Tibbe, JW Uhr and LWMM Terstappen: Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res., Vol. 10, No. 20, pp. 6897-904, Oct. 2004.
  30. ^ DC Danila, M. Fleisher, and HI Scher: Circulating tumor cells as biomarkers in prostate cancer. Clin. Cancer Res., Vol. 17, No. 12, pp. 3903-12, June 2011.
  31. JS de Bono, HI Scher, RB Montgomery, C. Parker, MC Miller, H. Tissing, G. V Doyle, LWWM Terstappen, KJ Pienta, and D. Raghavan: Circulating tumor cells predict survival benefit from treatment in metastatic castration- resistant prostate cancer. Clin. Cancer Res., Vol. 14, No. 19, pp. 6302-9, Oct. 2008.